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Abstract. Euclidean rotations iR" are bijective and isometric maps. Neverthe-
less, they lose these properties when digitized'inForn = 2, the subset of
bijective digitized rotations has been described explicitly by Nouvel and Rémila
and more recently by Roussillon and Cceurjolly. In the case of 3D digitized rota-
tions, the same characterization has remained an open problem. In this article, we
propose an algorithm for certifying the bijectivity of 3D digitized rational rotations
using the arithmetic properties of the Lipschitz quaternions.

1 Introduction

Rotations de ned inz?® are simple yet crucial operations in many image processing
applications involving 3D data. One way of designing rotationgdiis to combine
continuous rotations de ned oR® with a digitization operator that maps the result
back intoZ3. However, the digitized rotation, though uniformly close to its continuous
sibling, often no longer satis es the same properties. In particular, due to the alteration
of distances between points—provoked by the digitization—the bijectivity is lost in
general.

In this context, it is useful to understand which 3D digitized rotations are indeed
bijective. “Simple” 3D digitized rotations, in particular those around one of the coordinate
axes, possess the same properties as 2D digitized rotations. Therefore, an obvious
subset of 3D bijective digitized rotations consists of the 2D bijective digitized rotations
embedded iZ®3. Nevertheless, the question of determining whether a non-simple 3D
digitized rotation is bijective, remained open.

To our knowledge, few eorts were devoted to understand topological alterations of
Z?3 induced by digitized rotations. The contributions known to us were geared toward
understanding these alterationsZift Andres and Jacob provided some necessary condi-
tions under which 2D digitized rotations are bijective [5]; Andres proposed quasi-shear
rotations which are bijective but possibly generate errors, particularly for angles around
=2[1]; Nouvel and Rémila studied the discrete structure induced by digitized rotations
that are not bijective but generate no error [12, 14]; moreover, they characterized the set
of 2D bijective digitized rotations [13]. More recently, Roussillon and Cceurjolly used
arithmetic properties of the Gaussian integers to give armint proof of the conditions



for bijectivity of 2D digitized rotations [17]. On the other hand, more general 2D dig-
itized rigid motions—rotations, translations and their compositions—were studied by
Ngo et al.[9], with their impact on the topological properties of nite digital grids [10].
Moreover, Ngcet al. established some sicient conditions for topology preservation
under 2D digitized rigid motions [11]. Lately we provided a characterization of the set
of 2D bijective digitized rigid motions [16].

In this article, our contribution is as follows. We consider an approach similar to
that proposed by Roussillon and Cceurjolly to prove the conditions for bijectivity of
2D digitized rotations using arithmetic properties of Gaussian integers [17]—which are
complex numbers whose real and imaginary parts are integers [4]. Indeed, the product of
two complex numbers has a geometrical interpretation; more precisely, it acts as a rotation
when the norm of the multiplier is one. In our work, we partially extend the results of
Roussillon and Cceurjolly to 3D digitized rotations, employing Lipschitz quaternions,
which play a similar role to Gaussian integers. However, due to the non-commutative
nature of quaternions and their two-to-one relation with 3D rotations, the former approach
has not succeeded yet to fully characterize the bijective digitized rotations. Nevertheless,
we propose an algorithm which certi es whether a given digitized rotation, de ned by a
Lipschitz quaternion, is bijective. As a consequence, we covénallational rotations
i.e., those whose corresponding matrix representation contains only rational elements—
since they correspond to rotations given by Lipschitz quaternions. From the point of
view of the applications, excluding a rotation whose matrix has irrational elements is
a minor issue, since computers mainly work with rational numbers. Moreover, using
rational numbers ensures the exactness of the proposed certi cation algorithm.

This article is organized as follows. In Section 2, we recall the basic de nitions of 3D
rotations and Lipschitz quaternions. Section 3 provides our framework for studying the
bijectivity of digitized rotations irZ®. In Section 4, we provide an algorithm certifying
whether a given rational rotation is bijective or not when digitized n Finally, in
Section 5, we conclude this article and provide some perspectives.

2 Digitized rotations in three dimensions

A rotation inR?® is a bijective isometric map de ned as
U:R3! R3
X 7! Rx (1)

whereR is a 3D rotation matrix. Note that the matfikcan be obtained from a rotation
angle and axis by Rodrigues' rotation formula [6, 8, 19] or from a quaternion [6, 19].

2.1 Spatial rotations and quaternions

The proposed framework for bijectivity certi cation uses the formalism of quaternions.
These are the elements of the Ket fa+ bi+ cj+dkj a;b; c;d 2 Rgwith the following
properties:

2= 1 2= 1 K= 1,
k= kj=i; ki= k=j ij= ji=k:



Similarly to the set of complex numbelid,possesses a division ring structure, albeit a
non-commutative one. More precisely, farg;r 2 H:

— the conjugate off = a+ bi+ cj+ dkisdenedasg=a bi cj dk
— the product of two quaternions, de ned as

qp= (a1 + bii + ¢ j + dik)(az + boi + 2] + dok) =
atay bbby € didz + (agby + biaz + c1dy  diCp)i
+(@1C2  bydy + crap + dibp)j + (audx + biCy  C1hp + dhap)k;

is not commutative, i.eqp, pg, in general, although real numbers, i.e., quaternions
such thagg = g do commute wit[g all otBers; p

— the normofgisdenedasig= "qg= " qq= a2+ b?+c2+d?

— the inverse ofjis de ned asq * = quiz sothatgg ' =q g=1.

Any point in R® is represented by a pure imaginary quaternior: (X¢; Xo; X3) '
X1i + X2j + x3k. Then, any rotatiot) can be written ag 7! gxq *, wherex 2 R3[6,19].
The quaternior is uniquely determined up to multiplication by a nonzero real number,
and, ifjgj = 1, up to a sign changexq * = ( g)x( g) *; hence the correspondence
between unit quaternions and rotation matrices is two-to-one. Note that for any unit
norm quaterniom = a+ bi + ¢j + dk, a rotation angle and an axis of rotatioh are
givenas =2cos'a, and! = Jgg(c:—ggij respectively. We refer the reader unfamiliar with
quaternions to [2, 6, 19].

2.2 Digitized rotations

According to Equatiorf1), we generally have) (Z2) * Z 3. As a consequence, to de ne
digitized rotations as maps fro#rf to Z2, we usually consideZ® as a subset dr®,
applyU , and then combine the real results with a digitization operator

- R3 3
D:R? | ki K

k
Xy, 70 x+3 ;Jy+l CZ+ 3

wherebsc denotes the largest integer not greater tharhe digitized rotation is thus
dened byU = D U jz:. Due to the behavior db that mapsR® onto Z3, digitized
rotations are, most of the time, non-bijective. This leads us to de ne the notion of point
status with respect to a given digitized rotation.

De nition 1. Lety 2 Z3 be an integer point. The set of preimagey ofith respect to
U is de ned asMy(y) = fx 2 23 j U(x) = yg andy is referred to as a-point, where
s= jMy(y)jis called thestatusofy.

Remark 1. In Z3, jMU(y)j 2 f0; 1; 2; 3; 4gand one can prove that only pointsg 2 Z3
suchthajp gj< 3canbe preimagequapoint; pointsp; q;r 2 Z3 forming an
isosceles triangle of side lengthsl and = 2 can be preimages of Z&xpoint; points
p;q;r;s 2 Z° forming a square of side length 1 can be preimages of a 4-point.

The non-injective and non-surjective behaviors of a digitized rotation result in the
existence of-points fors, 1. Figure 1 illustrates a simple 3D rotation which provokes
0- and 2- point statuses.
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Fig. 1. Examples of three dierent point statuses: digitization cells correspondin@-td- and
2-points are in green, black and red, respectively. White dots indicate the positions of images of
the points of the initial seZ® by U, embedded ifR®, subdivided into digitization cells around the
points of the nal seZ?, represented by gray triangles. Note that, for readability purpdse,a

simple 3D digitized rotation such that= ;! = (0;0; 1)". Therefore, as for 2D digitized rotations,

only 0-, 1- and2- point statuses are possible. Note that only one 2D slice of 3D space is presented.

3 Bijectivity certi cation

3.1 Set of remainders

Let us compare the rotated digital gtiti(Z3) = qZ3q * with the gridZ3. The digitized
rotationU = D U is bijective if and only if each digitization cell &2 contains one and
only one rotated point a§Z3q *; in other words8y 2 Z3;jMy(y)j = 1. Let us denote
by C(y) the digitization cell, i.e. the unit cube, centered at the ppint(y:;ys;ys) 2 Z3:
" [ [ I
c(y) = 1 +1' 1 +1' 1 +1',
)= % 21Y1 5 Y2 Z,Y2 > Y3 27)’3 5
Instead of studying the whole source and target spaces, we study the set of remainders
de ned by the map
Sq:2% Z3! R®
Gy) T'axgql y:
Then, the bijectivity olU can be expressed as

8y 2 Z391x 2 Z3;Sy(x;y) 2 C(0);

which is equivalent to the “double” surjectivity relation, used by Roussillon and Cceur-
jolly [17]: (

8y 2 Z3 9x 2 Z3; S4(x;y) 2 C(0) 5

8x 2239y 2 Z3; S4(x;y) 29C(0)q * (2)



provided that both set8,(Z3;Z3)\ C(0) andS,(Z3;Z3)\ qC(0)q ! coincide; in other
words,Sq(Z%Z%)\ ((C(0)[ aC(0)g *) n(C(0)\ aC(0)q 1)) = 2. Hereafter, we shall
rely on Formulg2), and in the study of the bijectivity of digitized rotatidh we will
focus on the values @&,. More precisely, we will study the group spanned by values
of Sg:

_ 1 0 3 0 1 0
G—quq +Zq6q +ch1)q +28+Z%+Z

ROO

3.2 Dense subgroups and non-injectivity

The key to understanding the conditions that ensure the bijectivityisfthe structure
of G. For this reason, we start by looking at the im&@ef Sy, and discuss its density.

Proposition 2. If one or more generators @ have an irrational term, the® \ V is
dense for some nontrivial subspace V. We say@laas adense factor

On the contrary, we have the following result.

Proposition 3. If all generators ofG have only rational terms, then there exist vectors
; ;2 Gwhich are the minimal generators 6f

Proof. The generators db are given by the rational matr = [R j | 3] wherel ;3 stands
for the3 3identity matrix. AsB is a rational, full row rank matrix, it can be brought
to its Hermite normal fornH = [T j Os:3], whereT is a non-singular, lower triangular
non-negative matrix ands.; stands fol3 3 zero matrix, such that each row dfhas
a unigue maximum entry, which is located on the main diagod#®]. Note that the
problem of computing the Hermite normal fotthof the rational matriXB reduces to
that of computing the Hermite normal form of an integer matrixslstand for the least
common multiple of all the denominators Bfwhich is given bys = jgj?; compute the
Hermite normal fornHCfor the integer matri»sB; nally, the Hermite normal formH of

B is obtained bys *H°. The columns oH are the minimal generators G Notice that
the rank ofB is equal ta3. ThereforeH givesabasé; ; ),sothalG=2Z +Z +Z .
As HOgives an integer baseG is an integer lattice. u

Lemma 4. Whenevef is dense, the corresponding 3D digitized rotation is not bijective.

Proof. SinceGis dense, there exists= Sq(x;y) 2 G\ C(0) suchthat + = Sy(x+i;y)
also lies inC(0). Thenx andx + i are both preimages gfby U, which is therefore not
bijective. u

WhenG is dense (see Figure 2(a)), the reasoning of Nouvel and Rémila, originally
used to discard 2D digitized irrational rotations as being bijective [13], shows that a
corresponding 3D digitized rotation cannot be bijective as well. Whagrdifrom the
2D case is the possible existence of non-debgéth a dense factor (see Figure 2(b)).

In this context, we state the following conjecture.

4 Note that the de nition of Hermite normal form varies in the literature.
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Fig. 2. lllustration of a part ofc when: (a)G is dense; (b}5 is not dense but has a dense factor

— the set of points at each plane is dense while the planes are spaced by a rational distance ; (c)
Gis a lattice. In the case of (a) and (b), only some random points are presented, for the sake of
visibility. In (c), vectors; ; are marked in red, blue and green, respectively.

Conjecture 1. WhenevelG has a dense factor, the corresponding digitized rotation is
not bijective.

Henceforth, we will assume th& is generated by rational vectors, and forms
therefore a lattice (see Figure 2(c)). In other words, corresponding rotations are consid-
ered agational. The question now remains of comparing the ( nitely many) points in
Sq(Z32%)\ C(0) andS4(Z3;Z3%)\ qC(0)q *.

3.3 Lipschitz quaternions and bijectivity

To represent 2D rational rotations, Roussillon and Cceurjolly used Gaussian integers
[17]. In R3, rational rotations are characterized as follows [3].

Proposition 5. There is a two-to-one correspondence between the set of Lipschitz quater-
nionsL = fa+ bi+cj+ dkja;b;c;d 2 Zgsuch that the greatest common divisor of
a;b;c;d is 1, and the set of rational rotations.



Working in the framework of rational rotations allows us to turn to integgj&s
is an integer lattice. As integer lattices are easier to work with from the computational
point of view, we do scal& by jgj? in order to develop a certi cation algorithm.

Similarly to the former discussion, after scaligby joj°, we consider the nite
set of remainders, obtained by comparing the lati¢dq with the latticejgj?Z2, and
applying the scaled version of the m8pde ned as

Sq:2% 731 78

— 3
(xy) 7'axq qay: 3)
Indeed, Formula (2) is rewritten as
(8y 2 Z3 9x 2 Z3;Sy(x;y) 2 jqi?C(0) @
8x 2 Z3 9y 2 Z3;S4(x;y) 2 qC(0)q:

Note that the right hand sides of Formul@g¢and(4) are left multiples ofy. As a
consequence, we are allowed to divide thengjloy the left, while keeping integer-valued
functions. Let us de ne

Sg 78 731 74
(y)  7'xq ay:
Then, the bijectivity olJ is ensured when

( 8y 2 28 9x 2 73; SO(x;y) 2 qC(0)

8x 2 7% 9y 2 7% S3(x:y) 2 C(O)G (%)

provided that both se83(2% Z3)\ qC(0) andS}(Z*;Z®)\ C(0)q coincide.

4 An algorithm for bijectivity certi cation

In this section we present an algorithm which indicates whether a digitized rational
rotation given by a Lipschitz quaternion is bijective or not. The strategy consists of
checking whether there exists 2 ((QC(0) [ C(0)g) n(qC(0) \ C(0)a)) \ Z* such
thatw = Sg(x;y). If this is the case, then the rotation givendpis not bijective, and
conversely.

Becausgq is a Lipschitz quaternion, the values Sg span a sublattic&  Z*.
Therefore, given a Lipschitz quaternigr= a+ bi + cj + dk, solvingsg(x;y) = w with
x;y 2 Z3for w 2 G leads to solving the following linear Diophantine system:

Az=w (6)
wherez' = (x;y) 2 Z% and
b cdbocd
a dc adc

d a bd a b¥

cb a cb a



The minimal basi¢; ; ) of Gcan be obtained from the columns of the Hermite
normal form of the matriA. Since the rank oA is 3, we havec =272 +Z +2Z .

Therefore, the problem amounts to: (i) nding the minimal b&sis; ) of the
groupG by reducing the matriA to its Hermite normal form; (ii) checking whether
there exists a linear combination of these basis veetorsu +v +w ,foru;v,w2 Z
such thatv 2 (QC(0)[ C(0)q) n(gC(0)\ C(0)q).

To nd points of G that violate Formulg5), we consider pointsy 2 Z4\ qC(0)
(orw 2 Z*\ C(0)q) such thatv < C(0)q (or w < gC(0)). Then, we verify whethew
belongs taG. The membership veri cation can be done in two steps. Step 1: we check if
Equation (6) has solutions, while verifying if the following holds:

aw; bw, cws dws =0;

wherew = (wy;Wy; Ws;W,) andq = a+ bi + cj + dk Step 2: we check if Equatiai6)
has integer solutions by solving it. This can be done by reducing the nmaAtjiw] to
the Hermite normal form. Note that before iterating over pomt8 Z*\ ¢C(0) (or

w 2 Z*\ C(0)q), we can rst reduce the matri& to its Hermite normal fornd and then
reduce the augmented matfi{ j w], which is computationally less costly, as explained
in the following discussion.

All the steps are summarized in Algorithm 1. Figure 3 presents sets of points
qw 2 gC(0)q[j gj*C(0) for some Lipschitz quaternions, which induce bijective digitized
rational rotations, while Figure 4 presents non-bijective cases. Finally, Table 1 lists
some examples of Lipschitz quaternions that generate non-simple 3D bijective digitized
rotations.

Algorithm 1: Checks if a given Lipschitz quaternion generates a 3D bijective
digitized rotation.
Data: a Lipschitz quaterniog = a+ bi + cj + dks.t.gcd(a; b; c;d) = 1.
Result True if the digitized rotation given by is bijective and false otherwise.
H HermiteNormalFormA)
foreach w= (wy;W»; ws;w,) 2 Z*4\ qC(0) do
if awy bw cws dw,=0andfpjHp =w;p22Z3%, ? then
L if w <C(0)qthen

a B~ W N

L return false

6 return true

The time complexity of Algorithm 1 is given as follows.

Step 1: reduction of the matri& to the Hermite normal form can be done in a
polynomial time [18]. For instance, one can apply the algorithm proposed by Micciancio
and Warinschi [7] or its more recent, optimized version proposed by Pernet and Stein
[15], whose running time complexity for full row rank matrices—with some slight

5 A complete list of Lipschitz quaternions in the rarfgel 0; 10]%, inducing bijective 3D digitized
rotations can be downloaded from: httgx.doi.org10.5281zenodo.50674



Lipschitz quaternion Angle axis representation
3+ 2+ | 734;) = &40
5+4i+ ] 79.02;! = p%;p%;o
2+i+j+k 879! = 4454
4+ )+ 3k 7666 ;! = 0; o) 1
3+i+j+k 60;!=#§;#—§;#§
4+i+j+k 4683;! = & 45
5+i+j+k 3821;! = p%#-ép%

3+2i+2j+3k 1079 ;! = #%; ek oX
5+ 3i + 5j + 5k 2461 ;) = 235—,91955—,91955—@
5 4i+ 5j+5k 116851 = 2 2; e
10 10i + 10j + 9k 1184 ;! = sl e e
10+ 9f 10k| 24341 = »1; i 5 2
2+ 2+ j+ 2k 1126 ;! = %35
2 2 j+k 25851 = % Aid

Table 1. Examples of Lipschitz quaternions which generate 3D bijective digitized rotations.

modi cations it can handle non-full row rank matrices—@$mrf' log® N(A)), wheren

is the number of rowan the number of columns ard(A) stands for a bound on the
entries of the matridA [7]. Heren = 4 andm = 6. Thus, the time complexity of Step 1
is O(log? N(A)).

Step 2: the number of points &\ qC(0) (resp.Z*\ C(0)q) is bounded bygj®. For
each point, the time needed to reduce the mdHlix w] to the Hermite normal form
is O(n* log? N([H j w])), wheren = 4 andN([H j w]) is a bound on the entries of the
matrix[H j w] [7]. Therefore, the time complexity of Step 2Q%jqj® log® N([H j w])).
Note that determining whether < C(0)q (or w < gqC(0)) can be done in a constant time
while checking a set of inequalities.

Finally, we can conclude that the time complexity of Algorithm 1 is given by the
complexity of Step 2, namel@(jgj® log? N([H j w])).



@) (b)

Fig. 3. Visualization ofgw 2 qC(0)q[j ¢j*C(0) together withgC(0)g andjgj>C(0), for (a)q = 3+k
and (b)q = 3+ 4i + k, each of which induce bijective digitized rational rotation. Pogwsare
depicted as blue spheres.

@) (b)

Fig. 4. Visualization ofqw 2 qC(0)q\j qj?C(0) — in blue,qw 2 qC(0)q n jgj>C(0) — in red, and
jai’C(0) ngC(0)g—in green, for (ajy= 4+ kand (b)g=2 3i 2] 5k, each of which induces
a non-bijective digitized rational rotations.



5 Conclusion

In this article, we showed the existence of non-simple 3D bijective digitized rotations—
ones for which a given rotation axis does not correspond to any of the coordinate axes.

The approach is similar to that used by Roussillon and Cceurjolly to prove the
conditions for the bijectivity of 2D digitized rotations using Gaussian integers [17]. In
our work, we used Lipschitz quaternions, which play a similar role to Gaussian integers.
Due to the non-commutative nature of quaternions and their two-to-one relation with
3D rotations, the former approach has not succeeded yet to fully characterize the set of
3D bijective digitized rotations. Nevertheless, we proposed an algorithm that certi es
whether a digitized rotation given by a Lipschitz quaterrgda bijective or not. The
time complexity of proposed certi cation algorithm @(jgj® log? N([H j w])).

As a part of our future work, we would like to prove Conjecture 1 and nd the general
solution to Equatior6), which allows us to characterize the set of 3D bijective digitized
rotations. We may also consider images of nite sets (e.g. digital images or pieces
of ambient space). The bijective digitized rotations found above will map bijectively
any nite subset oZ3; but other (non-bijective) rotations may also be bijective when
restricted to a given nite subset. Identifying those can be achieved by applying a similar
algorithm to the one proposed by the authors in [16] for 2D rigid motions, though at a
greater cost.
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