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Abstract. Euclidean rotations inRn are bijective and isometric maps. Neverthe-
less, they lose these properties when digitized inZn. For n = 2, the subset of
bijective digitized rotations has been described explicitly by Nouvel and Rémila
and more recently by Roussillon and Cœurjolly. In the case of 3D digitized rota-
tions, the same characterization has remained an open problem. In this article, we
propose an algorithm for certifying the bijectivity of 3D digitized rational rotations
using the arithmetic properties of the Lipschitz quaternions.

1 Introduction

Rotations de�ned inZ3 are simple yet crucial operations in many image processing
applications involving 3D data. One way of designing rotations onZ3 is to combine
continuous rotations de�ned onR3 with a digitization operator that maps the result
back intoZ3. However, the digitized rotation, though uniformly close to its continuous
sibling, often no longer satis�es the same properties. In particular, due to the alteration
of distances between points—provoked by the digitization—the bijectivity is lost in
general.

In this context, it is useful to understand which 3D digitized rotations are indeed
bijective. “Simple” 3D digitized rotations, in particular those around one of the coordinate
axes, possess the same properties as 2D digitized rotations. Therefore, an obvious
subset of 3D bijective digitized rotations consists of the 2D bijective digitized rotations
embedded inZ3. Nevertheless, the question of determining whether a non-simple 3D
digitized rotation is bijective, remained open.

To our knowledge, few e� orts were devoted to understand topological alterations of
Z3 induced by digitized rotations. The contributions known to us were geared toward
understanding these alterations inZ2: Andres and Jacob provided some necessary condi-
tions under which 2D digitized rotations are bijective [5]; Andres proposed quasi-shear
rotations which are bijective but possibly generate errors, particularly for angles around
�=2 [1]; Nouvel and Rémila studied the discrete structure induced by digitized rotations
that are not bijective but generate no error [12,14]; moreover, they characterized the set
of 2D bijective digitized rotations [13]. More recently, Roussillon and Cœurjolly used
arithmetic properties of the Gaussian integers to give a di� erent proof of the conditions



for bijectivity of 2D digitized rotations [17]. On the other hand, more general 2D dig-
itized rigid motions—rotations, translations and their compositions—were studied by
Ngoet al. [9], with their impact on the topological properties of �nite digital grids [10].
Moreover, Ngoet al.established some su� cient conditions for topology preservation
under 2D digitized rigid motions [11]. Lately we provided a characterization of the set
of 2D bijective digitized rigid motions [16].

In this article, our contribution is as follows. We consider an approach similar to
that proposed by Roussillon and Cœurjolly to prove the conditions for bijectivity of
2D digitized rotations using arithmetic properties of Gaussian integers [17]—which are
complex numbers whose real and imaginary parts are integers [4]. Indeed, the product of
two complex numbers has a geometrical interpretation; more precisely, it acts as a rotation
when the norm of the multiplier is one. In our work, we partially extend the results of
Roussillon and Cœurjolly to 3D digitized rotations, employing Lipschitz quaternions,
which play a similar role to Gaussian integers. However, due to the non-commutative
nature of quaternions and their two-to-one relation with 3D rotations, the former approach
has not succeeded yet to fully characterize the bijective digitized rotations. Nevertheless,
we propose an algorithm which certi�es whether a given digitized rotation, de�ned by a
Lipschitz quaternion, is bijective. As a consequence, we cover allthe rational rotations,
i.e., those whose corresponding matrix representation contains only rational elements—
since they correspond to rotations given by Lipschitz quaternions. From the point of
view of the applications, excluding a rotation whose matrix has irrational elements is
a minor issue, since computers mainly work with rational numbers. Moreover, using
rational numbers ensures the exactness of the proposed certi�cation algorithm.

This article is organized as follows. In Section 2, we recall the basic de�nitions of 3D
rotations and Lipschitz quaternions. Section 3 provides our framework for studying the
bijectivity of digitized rotations inZ3. In Section 4, we provide an algorithm certifying
whether a given rational rotation is bijective or not when digitized inZ3. Finally, in
Section 5, we conclude this article and provide some perspectives.

2 Digitized rotations in three dimensions

A rotation inR3 is a bijective isometric map de�ned as
������
U : R3 ! R3

x 7! Rx
(1)

whereR is a 3D rotation matrix. Note that the matrixR can be obtained from a rotation
angle and axis by Rodrigues' rotation formula [6,8,19] or from a quaternion [6,19].

2.1 Spatial rotations and quaternions

The proposed framework for bijectivity certi�cation uses the formalism of quaternions.
These are the elements of the setH = fa+ bi + c j + dk j a;b; c; d 2 Rgwith the following
properties:

i2 = � 1; j2 = � 1; k2 = � 1;

jk = � k j = i; ki = � ik = j; i j = � ji = k :



Similarly to the set of complex numbers,H possesses a division ring structure, albeit a
non-commutative one. More precisely, forp;q; r 2 H:

– the conjugate ofq = a + bi + c j + dk is de�ned as ¯q = a � bi � c j � dk;
– the product of two quaternions, de�ned as

qp = (a1 + b1i + c1 j + d1k)(a2 + b2i + c2 j + d2k) =
a1a2 � b1b2 � c1c2 � d1d2 + (a1b2 + b1a2 + c1d2 � d1c2)i

+(a1c2 � b1d2 + c1a2 + d1b2) j + (a1d2 + b1c2 � c1b2 + d1a2)k;

is not commutative, i.e.qp , pq, in general, although real numbers, i.e., quaternions
such thatq = q̄ do commute with all others;

– the norm ofq is de�ned asjqj =
p

qq̄ =
p

q̄q =
p

a2 + b2 + c2 + d2;
– the inverse ofq is de�ned asq� 1 = q̄

jqj2 , so thatqq� 1 = q� 1q = 1.

Any point in R3 is represented by a pure imaginary quaternion:x = (x1; x2; x3) '
x1i + x2 j + x3k. Then, any rotationU can be written asx 7! qxq� 1, wherex 2 R3 [6,19].
The quaternionq is uniquely determined up to multiplication by a nonzero real number,
and, if jqj = 1, up to a sign change:qxq� 1 = (� q)x(� q)� 1; hence the correspondence
between unit quaternions and rotation matrices is two-to-one. Note that for any unit
norm quaternionq = a + bi + c j + dk, a rotation angle� and an axis of rotation!!! are
given as� = 2cos� 1 a, and!!! = (b;c;d)t

j(b;c;d)t j , respectively. We refer the reader unfamiliar with
quaternions to [2,6,19].

2.2 Digitized rotations

According to Equation(1), we generally haveU (Z3) * Z 3. As a consequence, to de�ne
digitized rotations as maps fromZ3 to Z3, we usually considerZ3 as a subset ofR3,
applyU , and then combine the real results with a digitization operator

������
D : R3 ! Z3

(x; y; z) 7!
�j

x + 1
2

k
;
j
y + 1

2

k
;
j
z+ 1

2

k�

wherebsc denotes the largest integer not greater thans. The digitized rotation is thus
de�ned by U = D � U jZ3. Due to the behavior ofD that mapsR3 ontoZ3, digitized
rotations are, most of the time, non-bijective. This leads us to de�ne the notion of point
status with respect to a given digitized rotation.

De�nition 1. Let y 2 Z3 be an integer point. The set of preimages ofy with respect to
U is de�ned asMU(y) = fx 2 Z3 j U(x) = yg, andy is referred to as as-point, where
s = jMU(y)j is called thestatusof y.

Remark 1. In Z3, jMU(y)j 2 f0;1;2;3;4gand one can prove that only pointsp;q 2 Z3

such thatjp � qj <
p

3 can be preimages of a2-point; pointsp;q; r 2 Z3 forming an
isosceles triangle of side lengths1;1 and

p
2 can be preimages of a3-point; points

p;q; r ; s 2 Z3 forming a square of side length 1 can be preimages of a 4-point.

The non-injective and non-surjective behaviors of a digitized rotation result in the
existence ofs-points fors , 1. Figure 1 illustrates a simple 3D rotation which provokes
0- and 2- point statuses.



Fig. 1. Examples of three di� erent point statuses: digitization cells corresponding to0-, 1- and
2-points are in green, black and red, respectively. White dots indicate the positions of images of
the points of the initial setZ3 by U , embedded inR3, subdivided into digitization cells around the
points of the �nal setZ3, represented by gray triangles. Note that, for readability purpose,U is a
simple 3D digitized rotation such that� = �

9 ; !!! = (0; 0; 1)t. Therefore, as for 2D digitized rotations,
only 0-, 1- and2- point statuses are possible. Note that only one 2D slice of 3D space is presented.

3 Bijectivity certi�cation

3.1 Set of remainders

Let us compare the rotated digital gridU (Z3) = qZ3q� 1 with the gridZ3. The digitized
rotationU = D�U is bijective if and only if each digitization cell ofZ3 contains one and
only one rotated point ofqZ3q� 1; in other words,8y 2 Z3; jMU(y)j = 1. Let us denote
by C(y) the digitization cell, i.e. the unit cube, centered at the pointy = (y1; y2; y3) 2 Z3:

C(y) =
"
y1 �

1
2

; y1 +
1
2

!
�

"
y2 �

1
2

; y2 +
1
2

!
�

"
y3 �

1
2

; y3 +
1
2

!
:

Instead of studying the whole source and target spaces, we study the set of remainders
de�ned by the map ������

Sq : Z3 � Z3 ! R3

(x; y) 7! qxq� 1 � y:

Then, the bijectivity ofU can be expressed as

8y 2 Z3 9!x 2 Z3;Sq(x; y) 2 C(0);

which is equivalent to the “double” surjectivity relation, used by Roussillon and Cœur-
jolly [17]: (

8y 2 Z3 9x 2 Z3; Sq(x; y) 2 C(0)
8x 2 Z3 9y 2 Z3; Sq(x; y) 2 qC(0)q� 1 (2)



provided that both setsSq(Z3; Z3) \ C(0) andSq(Z3; Z3) \ qC(0)q� 1 coincide; in other
words,Sq(Z3; Z3) \ ((C(0) [ qC(0)q� 1) n(C(0) \ qC(0)q� 1)) = ? . Hereafter, we shall
rely on Formula(2), and in the study of the bijectivity of digitized rotationU, we will
focus on the values ofSq. More precisely, we will study the groupG spanned by values
of Sq:

G = Zq
�

1
0
0

�
q� 1 + Zq

�
0
1
0

�
q� 1 + Zq

�
0
0
1

�
q� 1 + Z

�
1
0
0

�
+ Z

�
0
1
0

�
+ Z

�
0
0
1

�
:

3.2 Dense subgroups and non-injectivity

The key to understanding the conditions that ensure the bijectivity ofU is the structure
of G. For this reason, we start by looking at the imageG of Sq, and discuss its density.

Proposition 2. If one or more generators ofG have an irrational term, thenG \ V is
dense for some nontrivial subspace V. We say thatG has adense factor.

On the contrary, we have the following result.

Proposition 3. If all generators ofG have only rational terms, then there exist vectors
���; � ��;    2 G which are the minimal generators ofG.

Proof. The generators ofG are given by the rational matrixB = [R j I3] whereI3 stands
for the3 � 3 identity matrix. AsB is a rational, full row rank matrix, it can be brought
to its Hermite normal formH = [T j 03;3], whereT is a non-singular, lower triangular
non-negative matrix and03;3 stands for3 � 3 zero matrix, such that each row ofT has
a unique maximum entry, which is located on the main diagonal4 [18]. Note that the
problem of computing the Hermite normal formH of the rational matrixB reduces to
that of computing the Hermite normal form of an integer matrix: lets stand for the least
common multiple of all the denominators ofB which is given bys = jqj2; compute the
Hermite normal formH0 for the integer matrixsB; �nally, the Hermite normal formH of
B is obtained bys� 1H0. The columns ofH are the minimal generators ofG. Notice that
the rank ofB is equal to3. Therefore,H gives a base(���; � ��;    ), so thatG = Z��� + Z��� + Z   .
As H0 gives an integer base,sG is an integer lattice. ut

Lemma 4. WheneverG is dense, the corresponding 3D digitized rotation is not bijective.

Proof. SinceG is dense, there exists� = Sq(x; y) 2 G\ C(0) such that� + � = Sq(x+i; y)
also lies inC(0). Thenx andx + i are both preimages ofy by U, which is therefore not
bijective. ut

WhenG is dense (see Figure 2(a)), the reasoning of Nouvel and Rémila, originally
used to discard 2D digitized irrational rotations as being bijective [13], shows that a
corresponding 3D digitized rotation cannot be bijective as well. What di� ers from the
2D case is the possible existence of non-denseG with a dense factor (see Figure 2(b)).
In this context, we state the following conjecture.

4 Note that the de�nition of Hermite normal form varies in the literature.



(a) (b)

(c)

Fig. 2. Illustration of a part ofG when: (a)G is dense; (b)G is not dense but has a dense factor
– the set of points at each plane is dense while the planes are spaced by a rational distance ; (c)
G is a lattice. In the case of (a) and (b), only some random points are presented, for the sake of
visibility. In (c), vectors���; � ��;    are marked in red, blue and green, respectively.

Conjecture 1. WheneverG has a dense factor, the corresponding digitized rotation is
not bijective.

Henceforth, we will assume thatG is generated by rational vectors, and forms
therefore a lattice (see Figure 2(c)). In other words, corresponding rotations are consid-
ered asrational. The question now remains of comparing the (�nitely many) points in
Sq(Z3; Z3) \ C(0) andSq(Z3; Z3) \ qC(0)q� 1.

3.3 Lipschitz quaternions and bijectivity

To represent 2D rational rotations, Roussillon and Cœurjolly used Gaussian integers
[17]. In R3, rational rotations are characterized as follows [3].

Proposition 5. There is a two-to-one correspondence between the set of Lipschitz quater-
nionsL = fa + bi + c j + dk j a;b; c; d 2 Zgsuch that the greatest common divisor of
a;b; c; d is 1, and the set of rational rotations.



Working in the framework of rational rotations allows us to turn to integers:jqj2G
is an integer lattice. As integer lattices are easier to work with from the computational
point of view, we do scaleG by jqj2 in order to develop a certi�cation algorithm.

Similarly to the former discussion, after scalingG by jqj2, we consider the �nite
set of remainders, obtained by comparing the latticeqZ3q̄ with the latticejqj2Z3, and
applying the scaled version of the mapSq de�ned as

������
�Sq : Z3 � Z3 ! Z3

(x; y) 7! qxq̄ � qq̄y:
(3)

Indeed, Formula (2) is rewritten as
(

8y 2 Z3 9x 2 Z3; �Sq(x; y) 2 jqj2C(0)
8x 2 Z3 9y 2 Z3; �Sq(x; y) 2 qC(0)q̄:

(4)

Note that the right hand sides of Formulae(3) and(4) are left multiples ofq. As a
consequence, we are allowed to divide them byq on the left, while keeping integer-valued
functions. Let us de�ne ������

S0
q : Z3 � Z3 ! Z4

(x; y) 7! xq̄ � q̄y:

Then, the bijectivity ofU is ensured when
(

8y 2 Z3 9x 2 Z3; S0
q(x; y) 2 q̄C(0)

8x 2 Z3 9y 2 Z3; S0
q(x; y) 2 C(0)q̄;

(5)

provided that both setsS0
q(Z3; Z3) \ q̄C(0) andS0

q(Z3; Z3) \ C(0)q̄ coincide.

4 An algorithm for bijectivity certi�cation

In this section we present an algorithm which indicates whether a digitized rational
rotation given by a Lipschitz quaternion is bijective or not. The strategy consists of
checking whether there existsw 2 ((q̄C(0) [ C(0)q̄) n (q̄C(0) \ C(0)q̄)) \ Z4 such
thatw = S0

q(x; y). If this is the case, then the rotation given byq is not bijective, and
conversely.

Becauseq is a Lipschitz quaternion, the values ofS0
q span a sublattice�G � Z4.

Therefore, given a Lipschitz quaternionq = a + bi + c j + dk, solvingS0
q(x; y) = w with

x; y 2 Z3 for w 2 �G leads to solving the following linear Diophantine system:

Az = w (6)

wherezt = (x; y) 2 Z6 and

A =

2
666666666666666666664

b c d � b � c � d

a � d c � a � d c

d a � b d � a � b

� c b a � c b � a

3
777777777777777777775

:



The minimal basis( ����; ����; �   ) of �G can be obtained from the columns of the Hermite
normal form of the matrixA. Since the rank ofA is 3, we have�G = Z ���� + Z ���� + Z �   .

Therefore, the problem amounts to: (i) �nding the minimal basis( ����; ����; �   ) of the
group �G by reducing the matrixA to its Hermite normal form; (ii) checking whether
there exists a linear combination of these basis vectorsw = u���� + v���� + w�   , for u; v;w 2 Z
such thatw 2 (q̄C(0) [ C(0)q̄) n(q̄C(0) \ C(0)q̄).

To �nd points of �G that violate Formula(5), we consider pointsw 2 Z4 \ q̄C(0)
(or w 2 Z4 \ C(0)q̄) such thatw < C(0)q̄ (or w < q̄C(0)). Then, we verify whetherw
belongs to �G. The membership veri�cation can be done in two steps. Step 1: we check if
Equation (6) has solutions, while verifying if the following holds:

aw1 � bw2 � cw3 � dw4 = 0;

wherew = (w1;w2;w3;w4) andq = a + bi + c j + dk. Step 2: we check if Equation(6)
has integer solutions by solving it. This can be done by reducing the matrix[A j w] to
the Hermite normal form. Note that before iterating over pointsw 2 Z4 \ q̄C(0) (or
w 2 Z4 \ C(0)q̄), we can �rst reduce the matrixA to its Hermite normal form�H and then
reduce the augmented matrix[ �H j w], which is computationally less costly, as explained
in the following discussion.

All the steps are summarized in Algorithm 1. Figure 3 presents sets of points
qw 2 qC(0)q̄ [ j qj2C(0) for some Lipschitz quaternions, which induce bijective digitized
rational rotations, while Figure 4 presents non-bijective cases. Finally, Table 1 lists
some examples of Lipschitz quaternions that generate non-simple 3D bijective digitized
rotations5.

Algorithm 1: Checks if a given Lipschitz quaternion generates a 3D bijective
digitized rotation.

Data: a Lipschitz quaternionq = a + bi + c j + dk s.t.gcd(a;b; c; d) = 1.
Result: True if the digitized rotation given byq is bijective and false otherwise.

1 �H  HermiteNormalForm(A)
2 foreach w = (w1;w2;w3;w4) 2 Z4 \ q̄C(0) do
3 if aw1 � bw2 � cw3 � dw4 = 0 and fp j �Hp = w;p 2 Z3g, ? then
4 if w < C(0)q̄ then
5 return false

6 return true

The time complexity of Algorithm 1 is given as follows.
Step 1: reduction of the matrixA to the Hermite normal form can be done in a

polynomial time [18]. For instance, one can apply the algorithm proposed by Micciancio
and Warinschi [7] or its more recent, optimized version proposed by Pernet and Stein
[15], whose running time complexity for full row rank matrices—with some slight

5 A complete list of Lipschitz quaternions in the range[� 10; 10]4, inducing bijective 3D digitized
rotations can be downloaded from: http://dx.doi.org/10.5281/zenodo.50674



Lipschitz quaternion Angle axis representation
3 + 2i + j � � 73:4� ; !!! =

�
2p
5
; 1p

5
; 0

�

5 + 4i + j � � 79:02� ; !!! =
�

4p
17

; 1p
17

; 0
�

2 + i + j + k � � 81:79� ; !!! =
�

1p
3
; 1p

3
; 1p

3

�

4 + j + 3k � � 76:66� ; !!! =
�
0; 1p

10
; 3p

10

�

3 + i + j + k � � 60� ; !!! =
�

1p
3
; 1p

3
; 1p

3

�

4 + i + j + k � � 46:83� ; !!! =
�

1p
3
; 1p

3
; 1p

3

�

5 + i + j + k � � 38:21� ; !!! =
�

1p
3
; 1p

3
; 1p

3

�

3 + 2i + 2j + 3k � � 107:9� ; !!! =
�

2p
17

; 2p
17

; 3p
17

�

� 5 + 3i + 5j + 5k � � 246:1� ; !!! =
�

3p
59

; 5p
59

; 5p
59

�

5 � 4i + � 5j + 5k � � 116:8� ; !!! =
�
� 2

q
2
33; � 5p

66
; 5p

66

�

10 � 10i + 10j + 9k � � 118:4� ; !!! =
�
� 10p

281
; 10p

281
; 9p

281

�

� 10+ 9i � 9j � 10k � � 243:4� ; !!! =
�

9p
262

; � 9p
262

; � 5
q

2
131

�

2 + 2i + j + 2k � � 112:6� ; !!! =
�

2
3 ; 1

3 ; 2
3

�

� 2 � 2i � j + k � � 258:5� ; !!! =
�
�

q
2
3 ; � 1p

6
; 1p

6

�

Table 1.Examples of Lipschitz quaternions which generate 3D bijective digitized rotations.

modi�cations it can handle non-full row rank matrices—isO(mn4 log2 N(A)), wheren
is the number of rows,m the number of columns andN(A) stands for a bound on the
entries of the matrixA [7]. Heren = 4 andm = 6. Thus, the time complexity of Step 1
is O(log2 N(A)).

Step 2: the number of points inZ4 \ q̄C(0) (resp.Z4 \ C(0)q̄) is bounded byjqj3. For
each point, the time needed to reduce the matrix[ �H j w] to the Hermite normal form
is O(n4 log2 N([ �H j w])), wheren = 4 andN([ �H j w]) is a bound on the entries of the
matrix [ �H j w] [7]. Therefore, the time complexity of Step 2 isO(jqj3 log2 N([ �H j w])).
Note that determining whetherw < C(0)q̄ (or w < q̄C(0)) can be done in a constant time
while checking a set of inequalities.

Finally, we can conclude that the time complexity of Algorithm 1 is given by the
complexity of Step 2, namelyO(jqj3 log2 N([ �H j w])).



(a) (b)

Fig. 3.Visualization ofqw 2 qC(0)q̄[ j qj2C(0) together withqC(0)q̄ andjqj2C(0), for (a)q = 3+ k
and (b)q = 3 + 4i + k, each of which induce bijective digitized rational rotation. Pointsqw are
depicted as blue spheres.

(a) (b)

Fig. 4. Visualization ofqw 2 qC(0)q̄ \ j qj2C(0) – in blue,qw 2 qC(0)q̄ n jqj2C(0) – in red, and
jqj2C(0) nqC(0)q̄ – in green, for (a)q = 4 + k and (b)q = 2 � 3i � 2j � 5k, each of which induces
a non-bijective digitized rational rotations.



5 Conclusion

In this article, we showed the existence of non-simple 3D bijective digitized rotations—
ones for which a given rotation axis does not correspond to any of the coordinate axes.

The approach is similar to that used by Roussillon and Cœurjolly to prove the
conditions for the bijectivity of 2D digitized rotations using Gaussian integers [17]. In
our work, we used Lipschitz quaternions, which play a similar role to Gaussian integers.
Due to the non-commutative nature of quaternions and their two-to-one relation with
3D rotations, the former approach has not succeeded yet to fully characterize the set of
3D bijective digitized rotations. Nevertheless, we proposed an algorithm that certi�es
whether a digitized rotation given by a Lipschitz quaternionq is bijective or not. The
time complexity of proposed certi�cation algorithm isO(jqj3 log2 N([ �H j w])).

As a part of our future work, we would like to prove Conjecture 1 and �nd the general
solution to Equation(6), which allows us to characterize the set of 3D bijective digitized
rotations. We may also consider images of �nite sets (e.g. digital images or pieces
of ambient space). The bijective digitized rotations found above will map bijectively
any �nite subset ofZ3; but other (non-bijective) rotations may also be bijective when
restricted to a given �nite subset. Identifying those can be achieved by applying a similar
algorithm to the one proposed by the authors in [16] for 2D rigid motions, though at a
greater cost.
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