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Abstract Comparing 3D shapes up to isometry is a classical
geometric problem. In the case where voxels approximate
the shapes, this requires to apply a 3D rigid motion on Z>.
Unfortunately, such a motion does not preserve the topology
of digital objects. Our main result is the decomposition of
the 6D parameter space of digitized rigid motions for image
patches of radius up to 3. Our approach reduces the problem
to computing the arrangement of up to 741 quadrics — some
of them being degenerate. State-of-the-art methods require
a generic change of coordinates to handle the asymptotes,
which makes our problem intractable. We address this issue by
introducing and implementing a new algorithm for computing
arrangement of quadrics in 3D, which handles degenerate
directions and asymptotic critical values.

1 Introduction

Arrangements of algebraic varieties—e.g., surfaces given
by second-degree polynomials—often appear as a critical
element in studies where a problem (e.g., a search for possible
non-conflicting movements of a robotic arm [19]) can be
modeled as an enumeration of full-dimensional open cells
bounded by surfaces in the respective parameter space. The
final step then consists of reducing the allowed parameters’
set to only these open cells which fulfill the start assumptions
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e.g., a robotic arm does not hit any factory equipment or
the arm does not perform a movement that could damage its
servomotor.

At its core, this paper focuses on a problem of computing
arrangement of hypersurfaces—in the 6D parameter space
of 3D rigid motions—given by polynomials of degree two
with integer coefficients. Our goal is then to enumerate
6-dimensional open cells bounded by these hypersurfaces.

Rigid motions defined on Z> are simple yet crucial op-
erations in many digital image processing applications (e.g.,
image registration [41] and motion tracking [40]). However,
it is also known that such operations cause geometric and
topological defects [25,26,28,29]. To address these issues,
one can decompose the 6D parameter space of 3D rigid
motions with respect to a digital shape, and then transform
the shape by only these digitized rigid motions for which the
parameters do not induce topological changes of the shape.

The state-of-the-art techniques such as cylindrical alge-
braic decomposition or critical point method [4] are respec-
tively burdened—with respect to the number of variables—by
double exponential [6] and exponential [34] complexities.
Therefore, their direct applications to the problem of decom-
posing the six-dimensional parameter space of 3D digitized
rigid motions are practically inefficient. Indeed, high di-
mensionality and the existence of degenerate cases such as
asymptotic critical values [18]—e.g., a plane orthogonal to
a coordinate axis is tangent to a hypersurface in a point
at infinity—make a computation of such an arrangement
difficult.

In this article, we propose an ad hoc method as follows. We
first show that the problem of computing an arrangement of
hypersurfaces in the 6D parameter space of 3D rigid motions
can be simplified by uncoupling the six parameters of 3D
rigid motions to end up with two systems in three variables,
i.e., we obtain quadrics and planes in R3, which correspond
to the rotational and translational parts of rigid motions,
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respectively. We then, focus our study on computing sign
vectors over the set of quadrics and show that the translational
part of the original problem can be recovered from sample

points of 3-dimensional open cells bounded by the quadrics.

In our approach, we detect all topological changes along an
arbitrary non-generic direction, and we compute all critical
values including degenerate cases such as asymptotic critical
values.

We note that our strategy for quadrics arrangement is
similar to the one proposed by Mourrain et al. [22], and the
main differences are: we do not use generic directions; we
handle asymptotic cases and give new criteria to compute
critical values in polynomials of degree two; we compute,
and store at least one sample point for each full-dimensional
open cell where Mourrain et al. [22] compute full adjacency
information for all cells in an arrangement; moreover, we
precompute all critical values a priori wherein the former
approach only one type of critical values needs to be computed
before the main algorithm. Finally, our implementation is
provided together with some experiments for small digital
objects.

In digital geometry and combinatorics, a few complexity
analysis of problems similar to the one studied in this paper
has been made for several geometric transformations. The
complexities are related to the size of a given digital object
in general: O(d>) for 2D rotations [3]; O(d®) for 2D rigid
motions [24] and O(d'®) for 2D affine transformations [14],
where d stands for a radius of a digital object. Later, in this
article, we show that the theoretical complexity of such a
problem for 3D rigid motions is O(d?*).

There are a few algorithms available for enumerating open
cells in the parameter space of 2D rigid motions with respect
to a digital object. Algorithms known to us are: 2D rotations
[27]; 3D rotations around a given rational axis [38,39]; 2D

rigid motions [24,31] and 2D affine transformations [14].

However, none of them handle the general case of 3D rigid
motions that have 6 degrees of freedom.

This article is an extension of the conference paper [30].

Our new contributions compared to this preliminary work
are: we determine the Euclidean type of the quadrics i.e.,
their types in R?, involved in the problem, and we show that
they are smooth surfaces; we discuss the symmetric nature
of the problem in the context of the proposed algorithm; we
replace the calls to RAG1ib [36] during the computation of
an arrangement of conics with a recursive strategy of the
main algorithm; finally, we briefly discuss the types of curves
obtained from an intersection of two quadrics.

2 Classifying Rigid Motions of a 3D Digital Image
2.1 Rigid Motions on the 3D Cartesian Grid
Rigid motions on R? are bijective isometric maps defined as
U:R - R
(1)

x > Rx+t

where t = (11,1, 13) € R3 is a translation vector and R is a
rotation matrix. Let A be the skew-symmetric matrix

0 ¢ -b
A=|-—c 0 a
b —-a 0

where a, b, ¢ € R, and let I be the 3 X 3 identity matrix. Then
almost any rotation matrix R can be obtained via the Cayley
transform [5]:

R=(I-A)I+A)"!

| l+a?>-b>-c*  2ab-c) 2(b + ac)
= 7 2ab+c) 1-a?>+b*-c*  2bc-a) , (2)
2(ac — b) 2(a + bc) 1-a?-b*+c?

where d = 1 +a” + b + ¢2. Indeed, rotations by 7 around any
axis can only be obtained by the Cayley transform as a limit —
angles of rotation converge to 7 when a, b, ¢ tend to infinity
[37]. In practice, this constraint is negligible and does not
affect the generality of our study (see the following section
which discusses the evolution of an image patch under 3D
digitized rigid motions). Using this formula a rigid motion is
parametrized by the six real parameters (a, b, ¢, t1, 12, t3).
According to Formula (1), we generally have U(Z%) ¢ Z>.
As a consequence, in order to define digitized rigid motions
as maps from 73 to Z3, we combine, as usual, the results of
the rotation with a digitization operator that we define here as

D:R3 — 73

(x1, X2, X3) > (|_x1 + 4+ [+ %J)

where |s] denotes the largest integer not greater than s, a
digitized rigid motion is thus defined by U = D o U z.
Due to the behavior of D that maps R? onto Z3, digitized
rigid motions are—most of the time—non-bijective. However,
some are, and an algorithmic approach to verifying these
digitized rotations is given in [32].

2.2 Image Patch and its Alterations under Digitized 3D
Rigid Motions

Let us consider a finite set N, c Z3, called an image patch,
whose center is ¢ and radius is r such that
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N, ={veZ||lv-c| <r}.For simplicity we consider ¢
to be the origin. Next, we express the evolution of such an
image patch N, under digitized rigid motions U.

The digitized rigid motions U = D o U are piecewise
constant, and thus non-continuous, which is a consequence
of the nature of the digitization operator D. In particular,
the image U(v) of a point v € Z> may remain constant as
the parameters of U vary, and then suddenly jump from one
point of Z3 to another. In other words, an image patch N,
evolves non-continuously, under digitized rigid motions, with

respect to the parameters of U that underlies U (see Figure 1).

Hereafter, without loss of generality we assume that U(c)
stays in the digitization cell of ¢, namely U(c) = ¢, since
translation by an integer vector would not change the geometry

3
of N,. Under this assumption we have that t € (—%, %) .

Moreover, thanks to symmetry (reflections and rotations) we
consider only non-negative a, b, c. Indeed, the rotation matrix
R obtained from Cayley transform for a, b, ¢ corresponds to
the rotation given by a quaternion q = 1 + ai + bj + ck. Then
let us consider rotations o which are rotations by %k, keZ,

around one of the main axes e.g., o : (x,y,2) — (=Y, x, 2).

Then, applying o to q we obtain q" = 1 — bi + aj + ck and
o1 maps q’ onto q. We observe that, if a, b, ¢ are negative
then we can always find a series of o rotations which map
a, b, ¢ to non-negative values and back.

Studying the non-continuous evolution of an image patch
N is equivalent to study the discontinuities of U(v) for every
v € N; \ {c}, which occur when U(v) is on a half-grid plane,
namely a boundary of a digitization cell. This is formulated
by

1

Ri lizki—— 3
v+ 3 3)

where k; € H(N,) = Z N [-r’,r'],R; is the i-th row of
the rotation matrix for i € {1,2,3} and r’ is the longest
radius of U(N,) for all U, so that ¥’ = r + V3. We call the
hypersurfaces of Equation (3) tipping hypersurfaces.

3 Arrangement of Quadrics
3.1 The Problem as an Arrangement of Hypersurfaces

For any image patch AN, the parameter space Q =

{(a,b,c,tl,tz,tg) eRC|0< a,b,c,—% <t < %,i € {1,2,3}},

is partitioned by the set of tipping hypersurfaces, given by
Equation (3), into a finite number of connected subsets
— 6D open cells. The points in each cell induce different
rigid motions Y|y, but identical digitized rigid motions
Un, =DoUpy,.

Remark 1 Fora givenimage patch N,., tipping hypersurfaces
(3) in Q are given by the possible combinations of integer
4-tuples (vq, vo, v3, k;) for i = 1,2,3 where v = (v, v, v3) €

y
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Fig. 1 An example of discontinuity of U. In (a) and (b) the image
U(c) remains within the same unit cube—digitization cell—centered
around the origin depicted in blue; thus the image U(c) is the same for
the two digitized motions U associated to the continuous motions U
that slightly differ with respect to the parameters. However, the point
v = ¢+ (1,0,0), has distinct images U(v) in (a) and (b); in (a), the
digitization operator D sends U(v) onto the green integer point, while
in (b), it sends U(v) onto the red point

N, \ {¢} and k; € H(N,). Since |N;| — 1 is in O(r*) and
|H(N;)| is in O(r), the number of considerable tipping hyper-
surfaces is in O(r4), and thus in accordance with [12, Theorem
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21.1.4] the overall complexity of the arrangement is theoreti-
cally bounded by O(r%*).

Our goal is to compute for each 6D open cell in Q at
least one representative point called a sample point. As the
direct application of cylindrical algebraic decomposition or
critical points method to this problem is practically inefficient
due to the high dimensionality and existence of degenerate
cases that make the computation of the arrangement difficult.
Hence, in the following discussion, we develop an indirect
but still exact strategy.

3.2 Uncoupling the Parameters

The first idea of our strategy consists in uncoupling the
parameters in the six-dimensional parameter space Q. Namely,
we show that by considering the differences between the
tipping hypersurfaces given in Equation (3) for different
v € N, and k € H(N;)?, we can reduce the problem to the
study of an arrangement of surfaces in the (a, b, ¢)-space, and
then lift the solution to the six-dimensional space.

Let us consider a rigid motion defined by R and t. The
condition for having U(v) = k = (ky, k», k3) € Z* where
veN,is

1 1
ki_i <RiV+ti<ki+§
fori = 1,2, 3. Equivalently, we can write

1 1
ki—E—R[V<t[<ki+§_Riv' (4)

Then we call a configuration a list of couples (v, k), which
describes how the image patch N, is transformed. This
configuration can be described as a function

F: N, — H(N,)?
v = (v1,v2,v3) = k = (ky, ko, k3).

We would like to ascertain whether a given configuration F’
arises from a digitized rigid motion U i.e., it corresponds
to some parameters a, b, ¢, t1, t5, t3. Then the inequalities (4)
state precisely the necessary and the sufficient conditions
for the existence of the translation part t of such a rigid
motion, assuming that a, b, ¢ are already known. Let us now
remark that all these inequalities can be summed up in three
inequalities indexed by i:

1 ) 1
5161;3\2 (F(v)i 5" Riv) < \21/1\1(1 (F(V), + 5" Riv) (5)

or, equivalently to the following list of inequalities
1 1
Vv, v e N, F(V’)i - E - RiV’ < F(V)i + E - R;v. (6)

The key observation is that we have eliminated the variables
t1,t, 13 and have reduced the problem to a subsystem of
inequalities in a, b, c.

Moreover, due to the rational expression in the Cayley
transform (2), we may use the following polynomials of
degree 2:

gilv, kil(a, b, ¢) = (1 + a*> + b* + A2k = 1 = 2Rwv),  (7)

fori = 1,2, 3, namely

qi1[v, kil(a, b, ¢) = a*(2(k; —vi) — 1) + B*2(ky +vi) — 1)
+22(ky +v1) = 1) — da(bvy + c13)
- 4(bV3 - CV2) + 2(/(1 - V]) - 1,

plv. k)@ b.c) = a*Q(ky +v2) = 1) + b*2(ka = v2) = 1)
+ c2(2(k2 +vy) — 1) —4b(av, + cvs)
+4(avz —cvy) + 2(ky —vo) — 1,

g3V, k31(a, b, ¢) = a>(2(ks + v3) — 1) + B>(2(k3 + v3) — 1)
+ 2(2(ks — v3) — 1) — 4e(avy + bwo)
- 4(611)2 - bvl) + 2(k3 - V3) - 1.

Inequality (6) can be rewritten as the quadratic polynomial
inequalities

Vv, v € Ny, Qi[v, v, F(V);, F(v');](a, b, ¢) > 0,
where
Q% ', ki K'i)(a b.c) = v kil b, ) = ailv' e b,
+(+ad*>+b*+), ®)

fori = 1,2, 3, namely,

01V, v, ki, k' 1(a,byc) = a*(Ky + Vi + 1) + BX(Ky — V; + 1)
+ 2Ky = Vi + 1) + 2a(cV; + bVs)
+2bV5 —2cVo + K1+ V) + 1, )

Oalv. V' ko, k'3 l(a, b.c) = a*(Ky = Vo + 1) + b*(Ky + Vo + 1)
+ XKy = Vo + 1) +2b(cV; + aVy)
- 2(1V3 + 2CV1 + K+ Vy + 1, (10)

Qs[v. V. k3, k'3)(a,b,c) = a*(K3 — Vs + 1) + > (K3 — V3 + 1)
+ (K3 + V3 + 1) + 2¢(bVs + aVy)
+2aVh =2bVi + K3+ V3 +1, (11)

where K; = k; — k’;,V; = v/; — v;. The set of quadratic
polynomials for our problem is then given by

= {Qi[V, V, ki K N(@ byc) i = 1,2,3, %,V € Ny ki k! € H(N, )}

The zero sets of these polynomials are called tipping quadrics.
Figure 2 illustrates some tipping quadrics.
4 Characterization of Tipping Quadrics

In this section, we provide a characterization of tipping
quadrics.
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(b)

Fig. 2 Examples of two types of the zero sets of quadratic polynomials
of : (a) hyperboloid of one sheet and (b) hyperbolic paraboloid

4.1 Symmetry

The symmetries of an image patch A, and the rotation
matrix R (see Equation (2)) are interesting from the com-
putational point of view. Indeed, by applying the map
v :(a, b, c,vi,va,v3, ki) > (b, ¢, a,va, v3, V1, ki mod 3+1) to the
quadrics obtained from Equation (8) for a given i we can
recover the whole set , e.g., an application of y to Equation (9)
yields quadrics of Equation (10).

Direct computations of tipping quadrics may induce non-
real quadrics, e.g. an empty real set. Such non-real quadrics do
not contribute to the problem of computing an arrangement of
tipping quadrics, which are surfaces in R?, therefore, can be
discarded. Also, thanks to the symmetry of tipping quadrics
given by Equation (8) we can directly compute and discard

non-real quadrics only for one axis i, and then generate the
other quadrics by applying the map v to the valid quadrics
obtained for the axis.

4.2 Types of Tipping Quadrics

In this section we study the types of tipping quadrics
Q(a,b,c) = 0 for Q € . First we recall a classical result
that a quadric g(a, b, ¢) = a>A+ b*B + ¢*C +2bcD +2acE +
2abF +2aG +2bH +2cl + J = 0, is equivalently represented
by a symmetric matrix

AFEG

FBDH
M, = (12)

EDCI|
GHI J

such that x’ M,x = 0, where X’ = (a, b, c, 1). Also, the inertia
of M, is defined as a pair of (0¥, 0~), where o and o~
denote the number of positive and negative eigenvalues of
M,, respectively. Then the type of a quadric ¢ can be fully
characterized by inertia of M, and inertia of its left upper
3 % 3 sub-matrix [8]. For a complete description of inertia
based characterization we refer to [8, Table 1].

Lemma 1 Any real quadric Q(a,b,c) = 0 for Q €, has
inertia (2,2).

Proof First, we notice that only quadrics of real types are
relevant to our problem, in particular, the types of the inertias:
(3,1),(2,2),(2,1)and (1, 1) (see [8, Table 1]). Without loss of
generality let us consider the case i = 1, Q(a, b, ¢) is defined
by Equation (9). This leads us to Mg4,p,c) =

K +vitcl W A 0
Vi Ki-Vi+l 0 Vs
Vi 0 Ki-Vi+1 -V
0 Vs -V Ki+Vi+ 1_

We then compute the eigenvalues of Mgy p, ), which are of

the form 1 + K} + \/V12 + W2+ V32, ie. two are given as

1+ K; + V12 + 52 + V52 and the other two are given as
1+K - VVi2+ W2 + V32. This leads us to a conclusion that

if a quadric Q(a, b, c) is of a real type then the inertia of its
symmetric matrix has to be (2,2). O

From Lemma 1 we have the following.

Proposition 1 The quadrics given by the zero set of Equa-
tion (8) are either hyperboloids of one sheet or hyperbolic
paraboloids.

Examples of quadrics given by the zero sets of Equation (8)
are provided in Figure 2.
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Corollary 1 The real quadrics Q(a,b,c) = 0 for Q € are
smooth.

We do not prove Corollary 1 since it is known that quadrics
of inertia (2, 2) are smooth [8].

5 Computing an Arrangement of Tipping Quadrics

In this section we discuss how to compute the arrangement of
tipping quadrics Q(a, b, ¢) = 0 for Q € given by Equation (8).
Our strategy is similar to the one proposed by Mourrain
et al. [22]. The main differences are that we do not store
information about cells different from sample points of full-
dimensional connected components; we precompute and sort
all event points—points which induce changes of topology in
an arrangement of quadrics—a priori. Moreover, we consider
cases such as asymptotic critical values. In short, our method
is as follows. Step 1: detect and sort all the events in which
topology of the arrangement changes; Step 2: sweep by
a plane the set of quadrics along a chosen direction. The
sweeping plane stops between two event points, and we
intersect quadrics related to them with the sweeping plane.
For each of such points, this reduces to a problem of an
arrangement of conics in 2D. After this procedure, for each
sample point, we recover the translation part of the parameter
space of digitized 3D rigid motions. The description of this
last part will be given in the next section. Also, notice that
proposed approach could be applied to solve a similar problem
in 2D, i.e., generation of the different images of a 2D image
patch under 2D digitized rigid motions — a solution to this
problem was already proposed by Ngo et al. [24].

5.1 Bifurcation and Critical Values

In [22], the authors showed how to compute an arrangement
of quadrics by sweeping a plane along a generic direction.
Using the theory of generalized critical values [17,18,33] we
show how to compute a point per open-connected component
of an arrangement of quadrics using a projection along a
non-generic direction — hereafter we consider the direction
of the a-axis. Then by critical values, we denote values a at
which the arrangement topology changes.

We consider an arrangement of smooth quadrics defined
by zero sets of all respective polynomials in . In the following,
for p, q,r € I—where I is the index set of all polynomials in
, which is finite for a given finite r—we denote by: S, the
surface given by Q,(a, b,c) = 0; C,, 4 the curve defined by
Op = 04 =0and P, 4, the points obtained as 0, = O, =
0O, = 0. We assume that each C, ;4 is a curve of dimension
one that has either a finite number of singularities, or its
projection is a point i.e., Cp, 4 is a line.

Also, we denote by A the set of maximally connected
components of R* \ U, S,.

Let C be an open cell of A. We can associate to C the
extremal values Cipr = inf({a | (a,b,¢) € C}) and Cyyp =
sup({a | (a,b,c) € C}). We will show in this section that
these values are included in a bifurcation set. Furthermore,
we consider that a projection map on the first coordinate a is
denoted by p, and its restriction to a submanifold M c R3
is denoted by p|p1. Moreover, for ap € R we denote by My,
the set '0\7/14 (ap). Similarly, for an open interval (ag,a;) C R
we denote by M4, q,) the set pl‘/{,( ((ag, ay)).

We are interested in computing the set of values a above
which the topology of the cells of A changes. We show in
Lemma 2 that this set is included in the finite bifurcation set
[16] of the projections on the first axis restricted to different
manifolds.

Definition 1 Let M be a submanifold of R?. Then a bifur-
cation set of p|p is the smallest set B(pjp) C R such that
p: M\ p !t (Blpim)) — R\ B(pjm) is a locally trivial
fibration (see Figure 3).

More specifically, for all ap € R \ B(p|m), there exists € > 0
and a homeomorphism

I;D : (Cl() —€4apt+ 6) X Mao - M(ao—e,a0+e),

such that poy(x,p) = x forall (x,p) € (ap—¢€, ap+e€) X Myg,.
Figure 3 illustrates a 2D trivial and a 2D non-trivial fibrations.

In the following, we will consider the finite set B ¢ R
defined as the union of the bifurcation sets of p|s, and p|c, ,
and the projections of P, ;- [16]. More precisely, we define:

B, = Blpis,) U | JBloic, U | p(Ppgr)
q#p qEP.rEp.q#r
and B = U, B,,. Then we state the following results that
allow us to focus—during Step 2 of the algorithm—on a
subset of quadrics of , i.e., a subset of quadrics which bound
a maximal open-connected component.

Lemma 2 Let C be a maximal open-connected cell of R3 \
Up Sp- Let B be the lowest value of B such that Cint < S
and let v € (Cint, B). Finally, let 0C, be the boundary of C,
defined as an intersection of C with a plane a = v, and let J¢
be a set of edges. More precisely, Jc is the set of indexes p
such that the intersection of S, with 8C, has dimension one.
Then Cinr € By, forall p € Je.

Proof Let p € Jc and let p be a point on S, N dC, that does
not belong to any surface S, for g # p. Let a < Cj,r be the
maximal element of B, lower than v. Then ps, and the p|c,, ,
are trivial fibrations above (a, 8) and p(Pp 4,-) N (@, B) = 0
for g # p and r # p different integers. In particular, the points
of the curves C, , never cross above (e, 8). More formally,
there exists a continuous function ¢ : (@, ) — S, such that
¢(v) =p, po ¢d(x) = xand Q,(¢(x)) # 0 forall g # p.

Let T. be an open ball of radius € centered at ¢(v)
and defined as 7. = {y = (abc) € R | v €
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(2)

(b)

Fig. 3 2D examples demonstrating a locally trivial (a) and a non-ntrivial
(b) fibrations. In (a), the topology of the arrangement above the open
interval (ay, a) is constant, while in (b) it is not, i.e. in (b) there is an
element a. of the bifurcation set B in the open interval (ao, a;). Note
that in (a) ag, a; € B while in (b) ag, a; ¢ B.

[Cint, v] and ||(a, b, ¢) — ¢(v)|| < €}. We now prove by con-
tradiction that @ = Ciy. If @ < Ciyr, then there exists a
sufficiently small € > 0 such that the respective intersections
of T, with Q,, < 0 and Q,, > 0 are connected and such that
T, does not intersect any S, for g # p. Since p € T, the
intersection of 7. with C is not empty. Moreover, C is a
maximally connected component in the complement of the
union of S;, such that one of the two connected components
of T \ Sp, is included in C. Thus, the ball T, intersects C,

v Cinf
Csup

Fig. 4 Visualization of a maximal connected component C bounded
by two quadrics: Q1 = ab + c (the green-orange surface) and O, =
a* + 4ab + b* + ¢ — 4c¢ + 1 (the blue surface). The two red curves
represent the intersection of the surfaces i.e., Q1 = Q> = 0. The pink
curve represents dC,,. The a-, b- and c- axes were re-oriented and the
origin changed for a better visualization

for all a € [Ciys, v]. In particular, C¢,, is not empty, which
is a contradiction with the definition of Ciy¢. In particular,
Cinf = «, which allows us to conclude that @ = Cir and
Cinf € B,. 0O

Figure 4 shows a maximal connected component C bounded
by two quadrics, and Figure 3(a) illustrates intervals such that
the topology of some C,, a € (@, 8), remains constant.

For each value u € B, we denote by J, C I the set of
indexes p such that u € B,. Moreover, for a set of indexes
Ju, we denote by A, the set of maximally open-connected
components of R* \ U ¢y, S

Corollary 2 Let C be a maximal open-connected cell of
R3\ U p Sp- Let m > Cint be the smallest value of B greater
than Cing. For all a € (Cing, m), there exists a cell C’' € A Ty
such that C), C Cy.

Proof According to Lemma 2, Ciyr is contained in all B,
such that S;, contains a subset of dimension one of the border
of C,. In particular, one of the cells of A e, N p Na) is
includedin C,. O

From a constructive point of view, the authors of [17]
showed that the bifurcation set is included in the union of
the critical and asymptotic critical values. More specifically,
given a polynomial map f : M — R, we have B(f) C
K(f) U Ko (f), where K(f) are the critical values of f and
K areits asymptotic critical values. In [22], the authors called
the points of K(p|s,,) events of type A, the points of K(p|c,, )
events of type B and the points p(P, 4,,) events of type C.
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We extend their classification for degenerate projections, and
say that the points of K (p|s,) are events of type A and the
points of K (p|c,.,) are events of type Be.

From a computational point of view, we recall in the next
section how to compute the critical values of types A, B and
C. For the types A and B, we use the results from [17]
and simplify them for the case of quadrics.

Finally, as described in Section 5.5, our strategy will be to
compute the generalized critical values a, and for each such
a value to store J, — the set of indexes, such that either:

- a€K(ps,) UKs(ps,)
- a€K(pc,,) YKspc,,) forqg#p
—acp(Ppgr)forg#pr+pandg#r

This approach allows us to reduce the number of quadrics
that are necessary to consider in the intermediate steps of our
sweeping plane algorithm.

5.2 Detection of Critical Values

In this section we show how to compute the critical values
of types A, B and C. Finally, for the types A, and B, we
use the results from [17] and simplify them for the case of
quadrics.

Type A. The first type corresponds to values s € K(pys,,)
above which the topology of open-connected components
in A changes. Algebraically, such an event corresponds to
a value s € R for which there is a solution to the system
0p(s,b,c) = 0,Qp(s,b,c) = 0.0p(s,b,c) =0, for p € and
s is called a-critical value. In other words, this corresponds
to the situation a = s is tangent to a quadric Q,(a, b,¢) = 0.

Type B. This type corresponds to the case s € K(p|c, ,)-
Such an event corresponds to an s-value for which there are
solutions to the system Q,(s,b,c) = Qq(s,b,c) = (VQp, X
VQy)i(s,b,c) = 0, where p,q € I and p # g. In other words,
either the curve defined by Q,(s, b,¢) = Qq4(s,b,c) = 0, is
tangent to a plane orthogonal to the a-axis or a point (s, b, ¢)
is a singularity point of the curve C,, .

Note that, the values of type B include projections of the
isolated singularities, i.e., two quadrics intersect in a point or
a line that projects on a point.

Type C. There are values s € p(Pp, 4, ) above which the
topology of the open-connected components in A changes.
An a-critical value is such that there are solutions to the
system Qp(s,b,¢) = Qq(s,b,c) = Q,(s,b,c) = 0, where
p.q,vr € I and p # q,q # r,r # p. In other words, the
quadrics intersect in a point. Note that an intersection between
three quadrics can be a curve. This issue can be solved if a
curve projects on a point, thanks to the elimination theory and
use of resultants or Grobner basis. Indeed, we can compute a

a

Fig. 5 Example of an event of type A — a sweeping plane a = 0
(depicted in violet) tangent at a point (depicted in red) to a quadric
Q = bc — a = 0. Note that, the origin has been changed for a better
visualization

c

a

Fig. 6 Example of an event of type B — a sweeping plane is tangent
to two curves (depicted in red) given by an intersection of quadrics
Qi=bc+a=0and Q) = a*> + b? —4bc + c? +4a + 1 = 0. Note
that, the origin has been changed for a better visualization

univariate polynomial which vanishes on the projection of
the curve [7].

For more information about events of the types A, B and
C we refer readers to [22]. Figures 5-7 show examples of
events of the types A, B and C.

Right now, we are going to discuss the cases of asymptotic
critical values.
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Fig. 7 Example of an event of type C — a point (depicted in red) given by
an intersection of quadrics Q| =ab—-c =0,Qy =ab—-ac-b-c =0
and Q3 = a® — ab + c¢* — ¢ = 0. Note that, the origin has been changed
for a better visualization

Type Aw. This type of critical values corresponds to the
situation when a plane orthogonal to one of the coordinate
axes is tangent to a quadric at a point at infinity (see Figure 8).

Lemma 3 Let S be a smooth quadric defined by Q(a, b, c) =

79 29 29(4,0,0)
0. Denoting by M(a) the matrix azb 6172 dc b

P9 29 994.,0)

dcdb Hc2 Oc \*P

that depends only on a,
Kw(pis) € {a | M(a) has rank at most 1}.

Proof Consider the mapping f : R?> — R? such

that (a,b,c¢) — (a,Q(a,b,c)). The definition of K, im-

plies Koo(p|s) = Ko(f) N R x {0}. Let f(a,b,c)
maX(I b | IaC I)

max(| 321152 1152

. Then using [17, Proposition 2.5 and Def-

inition 3.1] with df = , there exists a sequence

00 90 0Q

da 0b Oc
(@, by, cu) € R? such that |b,| + |c,| — o and a,, — a and
(|bn | + lcn) f(an, by, cn) — 0. In particular, since Zg Z%
and 9 are linear functions, this implies that in the definition
of Koo, the expression |b,| + |c,| divided by the denomina-
tor of f(ay, by, c,) is bounded. In particular the numerator
of f(ayu, by, c,) converges toward 0. More specifically, %
and %—g converge toward 0. On the other hand, either |b,,|
or |c,| goes toward infinity. Assume without restriction of
generality that |b,| goes toward infinity. In this case, the

b

Fig. 8 Example of asymptotic critical value. There exist a plane a = 0
tangent to an asymptote—the red curves in the surface Q = ab —2ac —
2b — ¢ = 0—in a point at infinity. Note that the origin has been moved
for a better visualization

3080 &0 90 .
function 33 55 — a55c g is @ linear function that depends

only on b. Then this function converges toward 0 if and only
if the coefficient in front of b in the function and its constant
coefficient are 0. In particular, from the minor-rank relation
and the symmetry of the second order partial derivatives we

have that if 6 Q or Bab gc is non-zero, the matrix M(a) has
rank 1. If both are 0, then with similar arguments, we can see
that M(a) is the null matrix. Thus, K is a subset of a such
that M(a) has a rank less than or equal to 1. O

The algorithm to detect this type of events of tipping
quadrics is as follows. Step 1: we compute 9,Q(a, b,¢) =
ub+vc+wa+tand 0.Q(a,b,c) = u'b+v'c+w’a+t’, where
u, v, w,t,u’,v’,w’,t’ € Z are coeflicients of the correspond-
ing polynomials and Q € . Step 2: let v stands for the cross
product of v, = (u,v,wa+1t)and v, = (u’,v’,w’a+1"). Note
that the vectors v, and v, represent the rows of M (a). Finally,
we solve for a such that all the elements of v are equal to 0,
i.e. all the second minors of M(a) are equal to 0, in other
words when the rank of M(a) is lower than 2.

Type B. In this case we are considering the asymptotic
critical points of the projection restricted to a curve defined by
the intersection of two quadrics Q, = 0,0, =0€,p,g €I
and p # q. Using [17, Proposition 4.2], these correspond
to the a-coordinate of the sweeping planes that cross the
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projective closure of the curve at infinity. More formally,
we have: Kw(p|c, ) = {a | Ian, by, cn) € Cp 4 such that
|by| + |cn| — +o0 and a,, — a}. In particular, this set is also
the set of values a such that either the projection of C,, ; on
the (a, b)-plane or the projection of C,, , on the (a, c)-plane
has an asymptote in a.

According to [17, Proposition 4.2], these are the elements
of a non-properness set of a projection map. More formally,
we say that p belongs to a non-properness set of a projection
map 7 if for each neighborhood Y of p we have that 7~ (Y)
is not bounded. The properties of this set and the algorithms
to compute it have been studied notably in [11,15,21]. In
our case the non-properness set of the projection restricted
to Cp, 4 is the set of a-coordinates of the sweeping planes
that cross at infinity the projective closure of Cp, 4, i.e., the
smallest projective algebraic variety containing C,, .

To detect such a case we apply the following steps. Step 1:
we project the curve C, 4 to the (a, b)-plane (resp. (a, ¢)-plane)
eliminating the ¢ (resp. b) variable, and denote the corre-
sponding polynomials as Py (a, b) (resp. Pc(a, c¢)). Step 2: let
Cp(a) and C.(a) stand for head coefficients—coeflicients of
leading monomials—of Py (a, b) and P.(a, c), respectively.
The asymptotic critical value for a pair of quadrics happens
for Cp(a) = 0 or C.(a) = 0. For instance, let us consider the
polynomial (2a — 1)c? + a®. Then, the leading coefficient is
2a — 1 and when a = % we have that ¢ can take any value.
Indeed, there is an asymptote for a = % Figure 9 illustrates an
event of B, type and Figure 10 the corresponding projections.

5.3 Symmetry of B and C Type Events

The computations of the B and C type events are the most
expensive. Indeed, if computed directly, the corresponding
complexities are, respectively, O(n?) and O(n>) where n is the
number of quadrics (see Equation 8). Perhaps, the complexity
of this step could be reduced by an observation that if three
quadrics intersects at a = s then the other three quadrics obtain
from them by applying the maps ¢ : (a,b,¢) — (a,—c, b)
and ¢ : (a, b, c) — (—a, b, c) also intersect at a = s or a = —s.
Figure 11 provides a visualization of the maps’ actions on
quadrics.

Proposition 2 Let Qg C stands for a doublet (resp. triplet)
of quadrics that induce a B (resp. C) type event at a = s. Then,
¢ :(a,b,c)— (a,—c,b)and ¢ : (a, b, c) — (—a, b, c) applied
to Qs induces another doublet (resp. triplet) of quadrics that
also induce an event at a = s (or a = —s).

Proof From the matrix representation of Quadratic Normal
Form (see Matrix (12)) it can be verified that ¢ (resp. &) ap-
plied to a quadric Q; given by Equation (9) does not change
the shape of the corresponding matrix, i.e., the positions of ze-
ros, but the signs and the placement of the coeflicients. Since

Cc

Fig. 9 Visualization of a critical event of B, type. The intersection
of quadrics: Q) = bc + a = 0 (the orange-green surface) and Q;, =
b% — bc +a — 1 = 0 (the blue surface) leads to the red curves which
exhibit an asymptotic behavior at a = % The a-, b- and c- axes are
re-oriented and the origin is changed for a better visualization effect.
The respective projections of C| > onto the (a, b)- and (a, c)-plane are
illustrated in Figure 10

10 10

b 5 c 5 J
_ ]
j

() (d)

Fig. 10 Visualization of the projections of C}, ; (the light blue curve)
defined by the same quadrics as in Figure 9. These projections are

Pb(a, b) = b? +2a -1, (a) and Pc(a, ¢) = 2ac? + a*> - ¢2, (b). We

have an asymptote in the (a, ¢)-plane for 2a — 1 = 0, i.e. when a = % -

which is marked by a pink vertical line.

the coefficients are symmetric ¢(Q) € (resp. £(Q1) € ).
Using the same argument about symmetricity the coefficients
one can show that in the case of a quadric O, given by Equa-
tion (10) (resp. Q3 given by Equation (11)) the corresponding
matrix of Quadratic Normal Form is transformed under ¢
(resp. &) to a matrix corresponding to a quadric given by
Equation (11) and vice versa.
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_\3
a=-3

Fig. 11 Visualization of the actions of ¢ and & on a set of the quadrics.

On the one hand, in the plane a = \/Tg there is a C type event (represented

by a red point) given by an intersection of Q) = a — cb, Qs = ab +
b*+c+1and Q3 = 3a% +3b% — 2 — 1 (the red, green and blue curves)
that are mapped under ¢ to Q’y = a + cb, Q') = —ac +c* + b + 1
and Q'3 = 3a% — b2 + 3¢? — 1 (the dashed red, green and blue curves)
that also induce a C type event (the red point pointed by the arrow)

ina = g An application of ¢ can be seen as a rotation in the plane
a= g On the other hand, & maps the three quadrics that intersects
ata = —g (the black point) to a triple of the quadrics that intersects

ata = g (the black point) and vice versa. The action of & on the

quadrics can be seen as a reflection. Note that in the case of the map &

the mapping to the plane a = g is represented only by the black points

Then, the matrix forms of ¢ and & are

100 100
00-1 and 001/,
010 010

which are rotation matrices corresponding to rotations by an
angle 6 = % around w = (1,0,0), and by an angle 6 = &
_ (oL L .
around w = (0, NGk \rz),respectlvely.
From this we conclude that applications of ¢ and ¢ to the

quadrics Qs C gives a set of quadrics that also induce an
eventata =sora=—-s. 0O

We note that an open question is how to exploit the
symmetries and the maps 7, ¢, and £ to obtain an efficient
implementation of an algorithm computing the B and C type
events.

5.4 Sorting Critical Values

In this section, we focus on the representation of a-critical
values as real algebraic numbers—roots of univariate
polynomials—and operations such as comparisons of them,
which are necessary to sort a-critical values.

Similarly to Mourrain et al. [22], we represent a real alge-
braic number « as a pair: an irreducible univariate polynomial
P € Z[a] such that P(«) = 0 and an open isolating interval
(g, h), with g, h € Q, containing & and such that there is no
other root of P in this interval. Note that the isolation of the
roots of an irreducible univariate polynomial can be made
using Descartes’ rule [35].

Let @ = (P,(g, h)) and B = (Q, (i, j)) such that P,Q €
Zla] and g, h,i, j € Q, stand for two real algebraic numbers.
Then we can conclude if @ = g while checking a sign of
gcd — a polynomial greatest common divisors of P and Q
at an intersecting interval. Note that, when gcd(P, Q) is a
polynomial then its roots are the common roots of P and Q. On
the other hand, to conclude if « is greater than 3 or 8 greater
than «, we apply a strategy which consists of refining the
isolating intervals until they are disjoint. When two intervals
are disjoint then we can compare their bounds and conclude
if @ is greater than 8 (or B greater than @)!. To refine an
isolating interval of real roots, one can use e.g., bisection of
intervals, Newton interval method [13], [23, Chapter 5] or
quadratic interval refinement method proposed by Abbot [2].

The ability to compare two different algebraic numbers
allows us to sort a list of events which can be done with
well-known sorting algorithms such as quicksort.

5.5 Sweeping a Set of Quadrics

After sorting the set of a-critical values we are ready to com-
pute sample points of open cells. The sweeping plane moves
along the a-axis and stops between two consecutive a-critical
values in a midpoint. At such a midpoint, the sweeping plane
intersects the set of quadrics. On this plane orthogonal to the
a-axis, the subproblem becomes the arrangement of conics,
which can be solved by applying a strategy similar to the one
developed for the main problem. More precisely, we compute
and sort a set of b-critical values (or c-critical values) in the
arrangement of conics and sweep it by a line. Figure 12 shows
conics for three a-critical values in an arrangement of two
quadrics.

The remaining question is which quadrics we should
use at each midpoint to avoid missing an open cell. In our
approach, we use all the quadrics of for the first midpoint
(see Figure 13). Then for any other midpoint, we use only the

! Our implementation of real algebraic numbers and their com-
parison can be downloaded from https://github.com/copyme/
RigidMotionsMapleTools
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ai+1

Fig. 12 Visualization of sweeping of a set of the quadrics (see Figure 4).

Intersection planes at three different points. Between the planes we
have a-critical values (a; and a; 1) — a values in which topology of an
arrangement changes. Conics obtain from quadrics in red and green

quadrics related to the lowermost critical value from the pair
of a-critical values that bound this midpoint. Indeed, doing
so we ensure that at the end of our strategy we collect at least
one sample point for each full-dimensional open cell thanks
to Lemma 2, Corollary 2 and Lemma 3.

6 Recovering Translation Parameter Values

The algorithm proposed in the previous section gives us the
set R of sample points (a, b, ¢) € Q3, which correspond to
the rotation parameters. In this section we discuss how to
obtain sample points (1, 5, t3) of the translation part for each
(a, b, ¢) € R and how to generate different images of an image
patch under rigid motions.

Let us first note that Equation (3) under the assumption of

3 3
te (—%, %) defines the set of planes in the range = (—%, %)

foreach (a, b, ¢) € R, by settingv € N andk € H(N)?. These
planes divide into cuboidal regions. Figure 14 illustrates an
example of such critical planes in .

To obtain different images of an image patch N rotated
by a given a, b,c¢ € Q, under translations (¢1,1,13) € , we
compute the arrangement of planes in which involves sorting
of critical planes and finding a midpoint of each cuboidal
region bounded by them.

Remark 2 Note that we can have several sample points
(a, b, ¢) inducing the topologically equivalent arrangement of
planes (the order of planes is identical). Therefore, to avoid
unnecessary calculations we can define a hash function H

Fig. 13 The first intersections of 81, 513 and 741 quadrics obtained for
N1, N> and N3, respectively

which returns a different signature for each sample point
(a, b, ¢) which induce a different order of the critical planes.

To define a hash function H, let 7 stands for a collection
of indexes of critical planes. Then we define the hash function

i
I

!s'!"

;.
|

\

Il | =S
,!Q [

—————— |

H—
s -

(©

Fig. 14 Visualization of the critical planes for N =
{(1,0,0), (0, 1,0), (0,0, 0), (-1, 0,0), (0, -1, 0), (0,0, —1)} and some
(a, b, ¢). For the sake of visibility three types of orthogonal critical
planes are presented separately
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that returns the sorted indices of 7 with respect to the order
of critical planes.

Remark 3 We also note that, as (a, b, ¢) change between cells
possible not cells changes their topology in the (¢1, 2, t3)-space.
This observation tells us that some image patches will not
vary between different cells in (a, b, c)-space. To avoid having
duplicated image patches, we simple perform—as a post-
processing step—a direct comparison of the obtained image
patches and keep only unique ones together with the corre-
sponding parameters (a, b, ¢, 11, 17, 13).

7 Experimental Results

In this section, we discuss some characteristics of the ar-
rangement that we discuss with respect to a given image
patch.

7.1 Combinatorial Aspects of Quadrics

The number of quadrics obtained directly from Equation (8)
for N, (p),r = 1,2,3 is 1260,26790 and 106596, respectively.
In this section we show that this number for NV} (p) is reduced to
81 by discarding those which are always strictly positive (resp.
negative) and ones which are redundant. Note that similar
studies remain valid for different image patches. Indeed, the
numbers of quadrics after the reduction for N>(p) and N3(p)
are 513 and 741, respectively?.

Let us consider N|(p) and vectors u;

w = (01,0, us = (0,0, 1)), and h = (4,
rewrite (6) as
u;- (k' —h-Rv) <u - (k+h-Rvy) (13)

fori = 1,2,3 where v,v' € N(p), k. k' € H(Ni(p))>. This
induces

(1,0,0) (resp.
,%) Then we

wi—

ki—k!+1-u;-R(v-v) >0, (14)

where we know that g = k; — k] + 1 € ZN [~1,3]. We then
consider the following different cases of v = ||v —v’||, and we
consider k and &’ such that for any R Equation 14 is valid.

1. when v = 0, then there is no ¢ € Z N [—1, 3] satisfying
(14),

2. when v = 1, then there are 6 different pairs of (v, v’) and
we obtain ¢ € {0},

3. when v = 2, then there are 6 different pairs of (v, v’) and
we obtain g € {-1,0,1},

4. whenv = V2, then there are 12 different pairs of (v, v’)
and we obtain g € {—1,0,1}.

2 The complete list of the polynomials can be downloaded from
https://doi.org/10.5281/zenodo. 839212

Therefore, the number of valid quadrics Q[v, v/, k;, k] for
each case is 0 (case 1), 6 (case 2), 18 (case 3) and 36 (case 4).
Note that case 2 is included in case 3 up to a constant, so we
can ignore the 6 quadrics. This finally gives us 1836 = 27

2
quadrics per direction and thus 81 in total.

7.2 Intersection of Two Quadrics

In Table 1 we provided curves’ types that are given as an
intersection of two quadrics (B type events) for N3(0). Note
that, from all the types in Table 1 only smooth quartics
are not singular [10]. More information about the types of
intersection and visualizations of them can be found in [9].

Type in the real projective space P3(R) Number of cases
smooth quartic, two finite components 67540
smooth quartic, one finite component 63916
smooth quartic, two infinite components 26548
two lines 7460
cubic and secant line 2868
nodal quartic, affinely finite 1956
two secant conics, affinely finite 1070
double line 965
skew quadrilateral 828
nodal quartic, affinely infinite 658
point 552

Table 1 Types of intersections computed with QI (version 1.0.1) [1,20]
for the quadrics obtained for N3(0)

7.3 Computing Sample Points

Having implemented the algorithm we have used it to compute
sample points for image patches of different sizes, i.e., Nj,i =
1,2, 3. Due to technical issues—we used different machines
or even a cluster of six machines—we cannot provide exact
computation times. Nevertheless, say that they very from a
few—for N1—to several days—for Nj.

One of the rather clear drawbacks of our algorithm is that
it generates a lot of redundant sample points. Indeed, even
for N3 we have obtained several dozens of gigabytes of data,
which is a drawback of the proposed method.

8 Conclusions

In this article, we proposed a method to decompose the 6D
parameter space of digitized rigid motions for a given 3D
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image patch. We first uncouple the six parameters of 3D rigid
motions to end up with two systems in three variables and
start by studying an arrangement of quadrics in R3.

Our approach to computing an arrangement of quadrics in
3D is similar to the one proposed by Mourrain et al. [22] where
the main differences are; we do not use generic directions;
we handle asymptotic cases and give new criteria to compute
critical values in polynomials of degree two; we compute,
and store at least one sample point for each full-dimensional
open cell where Mourrain et al. [22] compute full adjacency
information for all cells in an arrangement. Moreover, we
precompute all critical values a priori wherein the former
approach only one type of critical values needs to be computed
before the main algorithm. Those sample points are then
used to decompose the other three-dimensional parameter
space. We also provided our implementation together with
experiment estimations for some small image patch.

As a part of our future work, we would like to use the
presented method in a study of topological alteration of Z>
under 3D digitized rigid motions.
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