

Kacper Pluta¹⁾, Pascal Romon²⁾, Yukiko Kenmochi¹⁾, Nicolas Passat³⁾ 2) Université Paris-Est, LAMA 3) Université de Reims Champagne-Ardenne, CReSTIC 1) Université Paris-Est, LIGM

The Big Question

A digitized rigid motion U is defined as the composition of continuous rigid motion \mathcal{U} followed by rounding function. They are neither injective nor surjective, in general. What are the bijective digitized rigid motions?

Approach

We observe local alterations of \mathbb{Z}^2 while using socalled *neighbourhood motion maps* which allow us to track changes between neighbourhoods of **p** and *U*(**p**).

Neighbourhood motion maps evolve under U while the position of $\mathcal{U}(\mathbf{p})$ inside a digitization cell changes. Therefore, we consider the mapping by so-called *remainder map* $\rho(\mathbf{p}) = \mathcal{U}(\mathbf{p}) - U(\mathbf{p})$ which maps into the so-called *remainder range*.

Figure: While $\rho(\mathbf{p})$ stays in the same zone, corresponding neighbourhood motion map does not change.

Bijective rigid motions of the 2D Cartesian grid

Bijective digitized rigid motions

To answer "The Big Question" we consider zones in the remainder range where we observe lack of surjectivity in the corresponding neighbourhood motion map.

The Answer

Bijective digitized rigid motions are those which are compositions of bijective digitized rotations—which are defined by Pythagorean twin triples—followed by translations $\mathbf{t} = \mathbf{t}' + \mathbf{t}'$ $\mathbb{Z}\psi + \mathbb{Z}\omega$, where $\mathbf{t}' \in \left(-\frac{1}{2(p^2+q^2)}, \frac{1}{2(p^2+q^2)}\right)^2$.

Bijective digitized motions of finite sets

Bijective digitized rigid motions are not dense in general. For example, there is no other bijective digitized rotations between angles 22.62° and 36.87°. This motivates us to propose algorithms for verifying if an application of a digitized rigid motion to a finite set S is bijective. In this approach we consider non-injective zones in the remainder range.

Forward algorithm

This approach consists of verifying if there is $\mathbf{p} \in$ $S \subset \mathbb{Z}^2$, such that $\rho(\mathbf{p})$ is in the non-injective zones.

Figure: Graphical interpretation of forward algorithm. Each arrow represents a mapping via $\rho(\mathbf{p})$.

In this approach, for each point inside the noninjective zones, we find a lattice of its preimages. Then we find an intersection of this lattice with a finite set S.

Figure: On the left, the mapping $\rho(\mathbb{Z}^2)$. When a digitized rigid motion is given by a primitive Pythagorean triple $(p^2 - p^2)$ q^2 , 2pq, $p^2 + q^2$), these points belong to a finite cyclic group. On the right, in green, zoomed non-surjective frame with the black-hatched region $\left(-\frac{1}{2(p^2+q^2)}, \frac{1}{2(p^2+q^2)}\right)^2$.

Backward algorithm

injective zone into a point of a lattice of its preimages.

One possible application of backward algorithm is to check if a digitized rigid motion alters important parts of an image.

We proved some necessary and sufficient conditions of bijective rigid motions on \mathbb{Z}^2 . From a more practical point of view, we proposed two efficient algorithms for verifying whether a given digitized rigid motion is bijective when restricted to a finite set. The complexities of the forward and backward algorithms are O(|S|) and $O(q) + O(\log \min(p^2 - p^2))$ $q^2, 2pq) + O(\sqrt{|S|})$, respectively.

[1]	No
L – J	dis
	(20
[2]	No
	ais pro

We thank Mariusz Jędrzejczyk of Norbert Barlicki Memorial Teaching Hospital for the computer tomography image.

Application

Conclusions

References

ouvel, B. and Rémila, E., *Characterization of bijective* scretized rotations, Lecture Notes in Computer Science (004).

ouvel, B. and Rémila, E., *Configurations induced by* screte rotations: Periodicity and quasi-periodicity *coperties*, Discrete Applied Mathematics (2005).

Acknowledgements