
University Paris-Est

Doctoral Thesis

Rigid Motions on Discrete Spaces

Author:
Kacper Pluta

Supervisors:
Yukiko Kenmochi

Pascal Romon
Reporters:

Valérie BERTHÉ
Éric ANDRES

Examiners:
David CŒURJOLLY

Atsushi IMIYA

Defended on 16.11.2017

“No one undertakes research in physics with the intention of winning a prize. It is the
joy of discovering something no one knew before.”

Stephen Hawking

“I am interested in mathematics only as a creative art.”

G. H. Hardy

“You’re unlikely to discover something new without a lot of practice on old stuff, but
further, you should get a heck of a lot of fun out of working out funny relations and
interesting things.”

Richard P. Feynman

Abstract

In digital geometry, Euclidean objects are represented by their discrete approximations,
e.g. subsets of the lattice of integers. Rigid motions of such sets have to be defined
as maps from and onto a given discrete space. One way to design such motions is
to combine continuous rigid motions defined on Euclidean space with a digitization
operator. However, digitized rigid motions often no longer satisfy properties of their
continuous siblings. Indeed, due to digitization, such transformations do not preserve
distances, while bijectivity and point connectivity are generally lost.

In the context of 2D discrete spaces, we study digitized rigid motions on the lattices
of Gaussian and Eisenstein integers. We characterize bijective digitized rigid motions
on the integer lattice, and bijective digitized rotations on the regular hexagonal lattice.
Also, we compare the information loss induced by non-bijective digitized rigid motions
defined on both lattices. Yet, for practical applications, the relevant information is not
global bijectivity, but bijectivity of a digitized rigid motion restricted to a given finite
subset of a lattice. We propose two algorithms testing that condition for subsets of the
integer lattice, and a third algorithm providing optimal angle intervals that preserve this
restricted bijectivity.

We then focus on digitized rigid motions on the 3D integer lattice. First, we study at
a local scale geometric and topological defects induced by digitized rigid motions. Such
an analysis consists of generating all the images of a finite digital set under digitized
rigid motions. This problem amounts to computing an arrangement of hypersurfaces
in a 6D parameter space. The dimensionality and degenerate cases make the problem
practically unsolvable for state-of-the-art techniques. We propose an ad hoc solution,
which mainly relies on parameter uncoupling, and an algorithm for computing sample
points of 3D connected components in an arrangement of second degree polynomials.
Finally, we focus on the open problem of determining whether a 3D digitized rotation
is bijective. In our approach, we explore arithmetic properties of Lipschitz quaternions.
This leads to an algorithm which answers whether a given digitized rotation—related to
a Lipschitz quaternion—is bijective.

v

Résumé

En géométrie discrète, les objets euclidiens sont représentés par leurs approximations
discrètes, telles que des sous-ensembles du réseau des points à coordonnées entières. Les
déplacements de ces ensembles doivent être définis comme des applications depuis et
sur un espace discret donné. Une façon de concevoir de telles transformations est de
combiner des déplacements continus définis sur un espace euclidien avec un opérateur
de discrétisation. Cependant, les déplacements discrétisés ne satisfont souvent plus les
propriétés de leurs équivalents continus. En effet, en raison de la discrétisation, de telles
transformations ne préservent pas les distances, et la bijectivité et la connexité entre les
points sont généralement perdues.

Dans le contexte des espaces discrets 2D, nous étudions des déplacements discrétisés
sur les réseaux d’entiers de Gauss et d’Eisenstein. Nous caractérisons les déplacements
discrétisés bijectifs sur le réseau carré, et les rotations bijectives discrétisées sur le réseau
hexagonal régulier. En outre, nous comparons les pertes d’information induites par des
déplacements discrétisés non bijectifs définis sur ces deux réseaux. Toutefois, pour des
applications pratiques, l’information pertinente n’est pas la bijectivité globale, mais
celle d’un déplacement discrétisé restreint à un sous-ensemble fini donné d’un réseau.
Nous proposons deux algorithmes testant cette condition pour un sous-ensemble donné
du réseau entier, ainsi qu’un troisième algorithme fournissant des intervalles d’angles
optimaux qui préservent cette bijectivité restreinte.

Nous nous concentrons ensuite sur les déplacements discrétisés sur le réseau cubique 3D.
Tout d’abord, nous étudions à l’échelle locale des défauts géométriques et topologiques
induits par des déplacements discrétisés. Une telle analyse consiste à générer toutes les
images d’un sous-ensemble fini du réseau par des déplacements discrétisés. Un tel prob-
lème revient à calculer un arrangement d’hypersurfaces dans un espace de paramètres
de dimension six. La dimensionnalité et les cas dégénérés rendent le problème insoluble,
en pratique, par les techniques usuelles. Nous proposons une solution ad hoc reposant
sur un découplage des paramètres, et un algorithme pour calculer des points d’échan-
tillonnage de composantes connexes 3D dans un arrangement de polynômes du second

vi

degré. Enfin, nous nous concentrons du problème ouvert de déterminer si une rotation
discrétisée 3D est bijective ou non. Dans notre approche, nous explorons les propriétés
arithmétiques des quaternions de Lipschitz. Ceci conduit à un algorithme qui détermine
si une rotation discrétisée donnée, associée à un quaternion de Lipschitz, est bijective
ou non.

Contents

Abstract v

Résumé vi

Preface xiii

I Digitized Rigid Motions of 2D Discrete Spaces 1

1 Introduction 3

2 Basic Notions 7
2.1 2D Discrete Spaces . 7
2.2 Properties of Gaussian and Eisenstein Integers 7
2.3 Pythagorean and Eisenstein triples . 8
2.4 Digitization – From C to Discrete Spaces 10
2.5 Rigid Motions . 11
2.6 Digitized Rigid Motions . 13
2.7 Rational Rotations . 14

2.7.1 Pythagorean Rational Rotations 15
2.7.2 Eisenstein Rational Rotations . 15
2.7.3 Density of Eisenstein Rational Rotations 17

3 Local Alterations Induced by Digitized Rigid Motions 19
3.1 Neighborhood Motion Map . 19
3.2 Remainder Range Partitioning and Neighborhood Motion Maps 20
3.3 Set of Neighborhood Motion Maps . 23
3.4 Neighborhood Motion Maps Graph . 26
3.5 Non-surjectivity and Non-injectivity of Digitized Rigid Motions 26
3.6 Preservation of Information . 28
3.7 Future Work and Conclusion . 30

4 Bijective Digitized Rigid Motions on Square Grid 33
4.1 Globally Bijective Digitized Rigid Motions 33
4.2 Locally Bijective Digitized Rigid Motions 35

4.2.1 Forward Algorithm . 37
4.2.2 Backward Algorithm . 38

4.3 Finding a Local Bijectivity Angle Interval 43

ix

Contents x

4.3.1 Hinge Angles for Rigid Motions . 44
4.3.2 An Algorithm for Finding the Local Bijectivity Angle Interval . . . 47

5 Bijective Digitized Rotations on Regular Hexagonal Grid 51
5.1 Bijectivity of Digitized Rotations . 51

5.1.1 Set of Remainders . 51
5.1.2 Factorization of Primitive Eisenstein Integers 53
5.1.3 Reduced Set of Remainders . 54

5.2 Characterization of Bijective Digitized Rotations 54
5.3 Density of bijective digitized rotations . 58

II Digitized Rigid Motions of 3D Discrete Spaces 61

6 Introduction 62

7 Basic Notions 65
7.1 Rotations in Three Dimensions . 65

7.1.1 Spatial Rotations and Quaternions 65
7.1.2 Spatial Rotations and Cayley Transform 66

7.2 Digitized Rigid Motions in Three Dimensions 67
7.2.1 Transformation Models . 68

7.3 Point Status After Digitized Rigid Motions 69
7.4 Connected Digital Sets and Neighborhood 73

8 Characterizing the Bijectivity of 3D Digitized Rotations 75
8.1 Bijectivity Characterization . 76

8.1.1 Set of Remainders . 76
8.1.2 Dense Subgroups and Non-injectivity 77
8.1.3 Lipschitz Quaternions and Bijectivity 78

8.2 An Algorithm for Bijectivity Characterization 79
8.3 Future work and conclusion . 83

9 Computing 3D Neighborhood Motion Maps 85
9.1 Motivation: Connectivity Alterations . 86
9.2 Neighborhood Alterations Under Digitized 3D Rigid Motions 87
9.3 Arrangement of Quadrics . 90

9.3.1 The Problem as Arrangement of Hypersurfaces 90
9.3.2 Uncoupling the Parameters . 90

9.4 Computing Arrangement of Quadrics in 3D 92
9.4.1 Bifurcation and Critical Values . 93
9.4.2 Detection of Critical Values . 96
9.4.3 Sorting Critical Values . 101
9.4.4 Sweeping a Set of Quadrics . 101

9.5 Recovering Translation Parameter Values 102
9.6 Case Study . 104

9.6.1 Combinatorial Issue . 104
9.6.2 Implementation and Experiments 105

Contents xi

9.7 Future Work and Conclusion . 106

A Neighborhood motion maps for GU
1 (4-neighborhood case) 109

B Neighborhood motion maps for GU
2 (8-neighborhood case) 113

C Neighborhood motion maps for GU
1 and their graph 119

Bibliography 123

Preface

Digital geometry deals with the geometric properties of digital sets – sets of discrete
points with prescribed properties like a point connectivity, which are approximations of
continuous objects known from Euclidean geometry. These digital sets are defined with
respect to a given underlying lattice. In this regard, the main purpose of digital geometry
is to re-establish the results of Euclidean geometry and study the differences between
continuous objects and their digital approximations. Fortunately, for my own curiosity
the gap between the digital and continuous worlds is not negligible. Indeed, in most of
the cases the digital world seems to be ruled by a different set of laws. For instance, two
digital circles are not necessary tangent at a point and two digital lines not necessary
cross each other in a point – even though, their continuous counterparts do cross in a
point. Everything gets even more interesting in 3D where an intuition developed in 2D
digital geometry setting, sometimes leads to false conclusions, if directly applied to 3D
digital geometry.

The manuscript is intended to discuss the recent advances on the topic of digitized rigid
motions applied to digital sets. By digitized rigid motions I mean rigid motions applied
to digital sets and followed by a digitization operator. These are sometimes called
“discrete rigid motions” but this misleading because such digitized transformations, in
general, do not possess the same properties as continuous rigid motions. Indeed, such
transformations are not distance preserving maps and they are non-bijective. The topic
itself has been studied by many at least since the 1980s but mostly in the context of 2D
digital geometry defined on the square lattice. The discussion provided in this thesis
touches the topic of digitized rigid motions defined on the square, the regular hexagonal
and the cube lattices. Indeed, I mostly focus on topological alterations of digital sets
induced by these transformations.

This manuscript has been divided into two parts. The first part is related to digitized
rigid motions of 2D discrete spaces and their subsets while the second is related to rigid
motions defined on the 3D digital space. There are rather few dependencies between the

xiii

Preface xiv

parts, and therefore it is not required to read the first part in order to understand the
second part and vice versa. However, some ideas are shared.

The reader will quickly discover that I wrote the manuscript in the first-person plural.
The reason for doing so is simple. The presented results were obtained in collaboration
with my supervisors Yukiko Kenmochi and Pascal Romon but also Nicolas Passat, Guil-
laume Moroz, Tristan Roussillon, David Cœurjolly and Victor Ostromoukhov. There-
fore, I simply cannot put my signature on the top of everything and claim it is entirely
mine.

The manuscript provides a few counterexamples/criticism to the previous studies. Please
note that, it was not my intention to criticize someone’s work but only to provide a
deeper understanding of issues which intuition proved to be false. Also, I would like to
ask readers to report any mistake spotted by writing to kacper.pluta@gmail.com.

In this place I acknowledge comments and help from: my supervisors Yukiko Kenmochi
and Pascal Romon from whom I learned what does it mean to be a scientist. I am also
very thankful for their patience and friendship; Nicolas Passat of the University of Remis
Champagne-Ardenne who provided me with many invaluable comments, I think Nicolas
should be called my unofficial adviser; Guillaume Moroz of INRIA Nancy thanks to
whom I gained my interest in algebraic geometry, and from whom I learned a lot about
it; Éric Andres of the University of Poitiers and Victor Ostromoukhov of the University
of Lyon 1 for pointing out bugs in our implementation of the algorithm for characterizing
bijective digitized rotations; Hugues Talbot of ESIEE Paris and David Cœurjolly of the
University of Lyon 1 who helped by allowing us to ran computations on blade machines
owned by ESIEE Paris and CC-IN2P3 cluster in Lyon; Bruno Jartoux who has been a
good companion for many discussion about science and academia. Finally, I would like
to thank Gisela Domej for all the support and her help during writing the manuscript.

Kacper Pluta
Marne-la-Vallée, France

August 2017

kacper.pluta@gmail.com

Part I

Digitized Rigid Motions of 2D
Discrete Spaces

Chapter 1

Introduction

In classical mechanics physicists are used to work with a rigid body – an ideal solid
object that keeps distances and angles defined between its points unchanged regardless
of external forces that have an impact on the object. These physical notions are related
to Euclidean geometry where rigid bodies are represented as geometric objects such as
points, lines, et cetera. In classical geometry motions induced by forces that affect an
object but do not distort it, are represented as rigid motions i.e., rotations, translations,
and their combinations. In everyday life we often observe rigid motions, for example,
when we want to move or rotate a spoon. Because we are surrounded by rigid motions
we are used to considering them as the most basic and simple geometric transformations.
In fact, this is true as long as we stay in a continuous world.

While working with computers Euclidean objects are often represented as their discrete
approximations e.g., subsets of the integer lattice Z2. In this context, rigid motions are
simple yet crucial operations in many applications involving 2D data. For example: in
template matching [1]; object tracking [2] or halftoning and printing [3, 4]. Therefore,
rigid motions of such sets have to be defined as functions from and onto a given dis-
crete space. One way to design them as such is to combine continuous rigid motions
defined on the Euclidean plane with a digitization operator that maps the results back
onto the discrete space. However, a digitized rigid motion, though uniformly “close”
to its continuous analogue, often no longer satisfies the same properties. In particu-
lar, due to digitization, such transformations do not preserve distances, and bijectivity
and point connectivity are generally lost. In this context, it is useful to understand
the combinatorial, geometric and topological alterations associated with digitized rigid
motions.

Over the last thirty years digitized rigid motions—as digital geometry in general—on
the square grid have attracted more attention than, for example, ones on the regular

3

Chapter 1. Introduction 4

hexagonal grid. Indeed, the square grid is predominant over other grids in fields such
as image processing, mostly because of its common use by image acquisition devices,
even though it is burdened with fundamental topological problems. In general, one
has to choose between different connectivity relations for objects of interest, and their
complements [5, 6]. On the contrary, the regular hexagonal grid is free from these
problems since it possesses the following properties: equidistant neighbors—each hexagon
has six equidistant neighbors; uniform connectivity—there is only one connectivity type
[7, 8]. We refer readers interested in an exhaustive comparison between image processing
tasks with respect to the hexagonal and square grids to the book by Middleton and
Sivaswamy [7].

Motivated by the aforementioned issues we introduce a framework, which enables us to
study the digitized rigid motions defined on both grids, and we study geometric and
topological defects induced by digitized rigid motions defined on these grids at a local
scale. Our approach is a generalization of the studies of digitized rigid motions based
on the concept of the neighborhood motion maps [9–12]. This enables us, for example,
to compare the information preservation between digitized rigid motions defined on the
square and the hexagonal grids.

In our humble opinion, the most impacting works within the field of digital geometry
defined on the square grid are: Paeth proposed a fast algorithm for rotating raster
images using shear transformations [13]. The Paeth algorithm has been since imple-
mented and used—even today—by some image processing tools, e.g., ImageMagick1 or
pnmrotate2, to name some. Later on, Andres proposed a similar idea based on quasi-
affine transformations and aimed at solving some problems of the Paeth algorithm e.g.,
lack of reversibility and a loss of information [14]. Nevertheless, up to our knowledge,
the Andres algorithm has never raised much interest, maybe because even after such
an improvement the shear-based approach is still burdened with some problems [15,
Section 2.3.3]; Anglin [16] proved that any rotation angle can be approximated by a
Pythagorean angle – angle of rational sine and cosine. An algorithm to perform such an
approximation can be found in Ostromoukhov’s PhD thesis [17]; Reveillès in his thèse
d’état3 [18] discussed a few approaches to digitized rotations e.g., bijective rotations by a
digital line. He also made an important observation related to twin Pythagorean triples.
Bijective digitized rotations were then used by Ostromoukhov in his work on halftoning
[3, 4, 17]. Later on, some sufficient conditions on bijectivity of digitized rotations were
proved by Andres and Jacob-Da Col [19]; In his PhD thesis Andres provided, in our
opinion, the first exhaustive analysis of known digitized and discrete rotations (digitized

1https://www.imagemagick.org
2http://netpbm.sourceforge.net
3A former French type of thesis equivalent, up to some degree, to a habilitation.

https://www.imagemagick.org
http://netpbm.sourceforge.net

Chapter 1. Introduction 5

rotations, discrete rotations by circles and discrete rotations by digital lines) with a
focus on bijectivity, distance preservation, connectivity preservation and commutativity
of such transformations [20]. He then extended the study by discussing bijectivity of
digitized motions in his habilitation [21]; Nouvel and Rémila [12] developed a framework
for studying local alterations of the integer lattice under digitized rotations, namely on
certain digital sets. This combinatorial model of the local behavior led them to charac-
terizing bijective digitized rotations [22], and more generally studying non-bijective ones
[11, 23]; more recently, Roussillon and Cœurjolly provided an alternative characteriza-
tion of bijective digitized rotations which is based on arithmetic properties of Gaussian
integers [24]; in his PhD thesis [1], Fredriksson considered digitized rotations, and the
transition angles which correspond to a shift in the image of an integer point from one
digitization cell to another. These special angles were further studied—and named hinge
angles—by Nouvel and Rémila [25]; Ngo et al. investigated the combinatorial structure
of the parameter space of rigid motions of finite digital sets [26]. This study led to a
better understanding of the topological consequences of such transformations by ana-
lyzing the structural organization of this space; to the determination of topologically
equivalent motions [27]. From a methodological point of view, these theoretical results
led to the proposal of combinatorial registration methods [28], and constrained rigid
transformation approaches [29]. Finally, Ngo et al. established sufficient conditions for
topology preservation under 2D digitized rigid motions [30].

On the other hand, studies related to digitized rotations on the regular hexagonal grid
are far less numerous. Her—while working with the hexagonal grid represented by cube
coordinate system in 3D—showed how to derive a rotation matrix such that it is simpler
than a 3D rotation matrix obtained in a direct way [31].

In this context our contributions are the following.

1. We generalize the aforementioned combinatorial model of the local behavior of
digitized rotations [11, 12] to (i) digitized rigid motions, and (ii) any neighborhood
regardless of its size, shape and the underlying grid i.e., the square or hexagonal
grid. We call this local description neighborhood motion maps. In this regard we
then characterize the bijective rigid motions on the square grid and compare the
information loss between digitized rigid motions defined on the square and the
hexagonal grid. Indeed, we show that such a loss of information is relatively lower
for digitized rigid motions defined on the hexagonal grid. These contributions are
related to the following publications [9, 10].

2. We restrict then to the practical problem of verifying whether a prescribed subset
of the integer lattice is transformed injectively by a digitized rigid motion. To this

Chapter 1. Introduction 6

end, the local approach of neighborhood motion maps is well suited and leads to
an algorithmic answer. More precisely, two different algorithms are proposed, the
efficiency of each depends on the ratio of the size of the subset to the complexity
of the rigid motion measured by the integers of the Pythagorean triples. This
algorithmic approach can be used for finding, for a given subset S and an injective
rigid motion on S, a range of nearby parameters ensuring injectivity, thereby
offering a stability result. This is done by extending the concept of hinge angles
[1, 25, 32] to rigid motions. The algorithms were presented in [9].

3. While working in the framework of the hexagonal grid we characterize rational
rotations and prove that any angle can be approximated by such rational rotations
with any given accuracy. Then, we characterize bijective digitized rotations on the
hexagonal grid and show that these are more frequent than their counterparts on
the square grid. These contributions appeared in [10, 33].

4. Finally, Appendices A–C, contain a complete (up to symmetries) set of neighbor-
hood motions maps computed for 4-, 8- (the square grid case) and 6- neighborhoods
(the hexagonal grid case). The appendices were published in [9, 10].

The remainder of Part I is organized as follows. In Chapter 2 we provide basic notations
related to digital geometry and digitized rigid motions. Moreover, we provide in this
chapter a characterization of rational rotations in the hexagonal grid. Then, Chapter 3
provides a discussion about the framework of neighborhood motion maps and the issue
of the information preservation. In Chapter 4 we discuss the bijective digitized rigid
motions on the square grid and its subsets. We finish Part I providing a characterization
of bijective digitized rotations on the hexagonal grid together with a comparison of
frequencies of such rotations on both grids.

Note that we do not provide a general conclusion of Part I. Instead, we end each chapter
by concluding the discussed topics and possible future works.

Chapter 2

Basic Notions

In this chapter we provide the basic notions and notations related to the square and
regular hexagonal grids, which are the discrete spaces we work on. These notions and
notations are then used in Part I.

2.1 2D Discrete Spaces

We define the square lattice as the complex numbers whose real and imaginary parts are
both integers Z[i] = Z⊕Zi (see Figure 2.1(a)). The elements of Z[i] are called Gaussian
integers.

Similarly, we have the hexagonal lattice Z[ω] = Z⊕ Zω where ω = −1
2 +

√
3

2 i is a third
root of unity (see Figure 2.1(b)). The elements of Z[ω] are called Eisenstein integers;
which are—similarly to Gaussian integers—complex numbers of the form x = a + bω,

where a, b ∈ Z.

Hereafter, we use Z[κκκ] to indicate that the choice between Gaussian or Eisenstein integers
is arbitrary, more specifically κκκ ∈ {i,ω}.

2.2 Properties of Gaussian and Eisenstein Integers

The Gaussian (resp. Eisenstein) integers form a Euclidean ring Z[i] (resp. Z[ω]) in the
complex plane C; in particular they possess similar properties to the ordinary integers:
division, prime factorization and greatest common divisor are well-defined. Let us con-
sider x = a + bi ∈ Z[i] (resp. x = a + bω ∈ Z[ω]) then Table 2.1 provides some basic
properties of both types of integers.

7

Chapter 2. Basic Notions 8

1

i

(a)

1

ω

(b)

Figure 2.1: The square grid (a) and the hexagonal pointy topped grid (b). The
arrows represent the bases of the underlying lattices.

Property Gaussian integers Eisenstein integers
Conjugate x̄ = a− bi x̄ = (a− b)− bω
Squared modulus |x|2 = x · x̄ = a2 + b2 |x|2 = x · x̄ = a2 − ab+ b2

Units Υ = {±1,±i} Υ = {±1,±ω,±ω̄}
Divisibility y|x if ∃z ∈ Z[κκκ] such that x = y · z and y ∈ Z[κκκ]

Table 2.1: Basic properties of Gaussian and Eisenstein integers.

Moreover, given Gaussian (resp. Eisenstein) integers x and y, a greatest common divisor
gcd(x,y) = z ∈ Z[κκκ], is defined as a largest Gaussian (resp. Eisenstein) integer (up to
multiplications by units) which divides both x and y; every common divisor of x and
y also divides z. By a largest Gaussian (resp. Eisenstein) integer we mean one of a
largest modulus. Note since Gaussian (resp. Eisenstein) integers form a Euclidean ring
such a greatest common divisor always exists. Also, x is said to be a Gaussian (resp.
an Eisenstein) prime if its divisors are only of the form υ · x,υ ∈ Υ.

2.3 Pythagorean and Eisenstein triples

Pythagorean triples. Pythagorean triples (a, b, c) ∈ Z3 are triples of integers such
that

a2 + b2 = c2.

Thanks to the symmetry, hereafter, we consider only positive primitive Pythagorean
triples, i.e., 0 < a < b < c, gcd(a, b, c) = 1. Let us then denote the set of positive

Chapter 2. Basic Notions 9

primitive Pythagorean triples by P+
ρ and consider the subset

Z[i]+ρ =
{
α = a+ bi ∈ Z[i]

∣∣∣ (a, b,
√
a2 + b2) ∈ P+

ρ

}
.

We also use Pρ to refer to the set of primitive Pythagorean triples and Z[i]ρ to refer to the
corresponding set of Gaussian integers. A part of Z[i]+ρ is illustrated by Figure 2.2(a).

In the case of the primitive Pythagorean triples it is well known that such triples can
be generated from two integers called generators.

Lemma 2.1. Positive integers a, b and c form a primitive Pythagorean triple (a, b, c) if
and only if there exist p, q ∈ Z, 0 < q < p, gcd(p, q) = 1 and p − q 6≡ 0 (mod 2), such
that

a = p2 − q2,

b = 2pq,

c = p2 + q2.

Note that Pythagorean triples correspond to right triangles of integer side lengths e.g.,
the well-known (3, 4, 5) triple (see Figure 2.3(a)).

Eisenstein triples. Eisenstein triples (a, b, c) ∈ Z3 are triples of integers such that

a2 − ab+ b2 = c2.

Thanks to the symmetry, hereafter, we consider only positive primitive Eisenstein triples
i.e., 0 < a < c < b, gcd(a, b, c) = 1 and either a + b + c 6≡ 0 (mod 3) or 2b − a + c 6≡ 0
(mod 3) [34]. Let us then denote the set of positive primitive Eisenstein triples by E+

ρ

and consider the subset

Z[ω]+ρ =
{
α = a+ bω ∈ Z[ω]

∣∣∣ (a, b,
√
a2 − ab+ b2) ∈ E+

ρ

}
.

We also use Eρ to refer to the set of primitive Pythagorean triples and Z[ω]ρ to re-
fer to the corresponding set of Eisenstein integers. A part of Z[ω]+ρ is illustrated by
Figure 2.2(b).

Lemma 2.2 (Gordon [34]). Positive integers a, b and c form a pair of primitive Eisen-
stein triples (a, b, c) and (b − a, b, c), if and only if there exist s, t ∈ Z, 0 < s <

Chapter 2. Basic Notions 10

(a) (b)

Figure 2.2: Visualization of Z[i]+ρ (a) and Z[ω]+ρ (b), for 0 < a, b ≤ 2000. Note
that, the axes were scaled for a better visualization effect and the distance
between two consecutive axes’ ticks is 30.

t, gcd(s, t) = 1 and t− s 6≡ 0 (mod 3), such that
a = s2 + 2st,

b = t2 + 2st,

c = s2 + t2 + st.

For the proof, see the discussion provided by Gilder in [35].

Note that the union of triangles of side lengths (a, b, c) ∈ Z3 and (b−a, b, c) ∈ Z3 is equal
to an equilateral triangle, which sides’ length is equal to b. In such a union two triangles
share the side of length c. Figure 2.3(b) illustrates an example of such triangles. For
more information about Eisenstein integers we encourage readers to look into [34, 35].

2.4 Digitization – From C to Discrete Spaces

In general, geometric objects represented by computers are obtained via sampling process
called digitization. The most common digitization model is called Gaussian [6].

To define such a digitization operator let us first define a grid cell centered at a Gaussian
(resp. an Eisenstein) integer x, for a given rotation and scaling factor ξ ∈ Z[i] (resp.

Chapter 2. Basic Notions 11

a

b
c

θ′

θ

(a)

a

bc

b − a

b

θθ′

(b)

Figure 2.3: Geometric interpretation of: a Pythagorean triple (a = 3, b = 4, c =
5) (a) and a pair of Eisenstein triples, (a = 5, b = 8, c = 7) and (b− a = 3, b =
8, c = 7) (b). Note that the marked angles are: θ = arctan

(
b
a

)
, θ = arctan

(
a
b

)
(a) and θ = arctan

(√
3a

2b−a

)
, θ′ = arctan

(√
3(b−a)
b+a

)
(b).

ξ ∈ Z[ω]):

Cξ(x) =
{

y ∈ C | ∀υ ∈ Υ, (|y− x| < |y− x + υ · ξ| ∧ |y− x| ≤ |y− x− υ · ξ|)
}
.

Figure 2.5 illustrates digitization cells, i.e. ξ = 1, of Z[i] and Z[ω]. The digitization
operator is then defined as a function D : C → Z[κκκ], such that ∀x ∈ C, ∃!D(x) ∈ Z[κκκ]
and x ∈ C1(D(x)). We can note that D(Br(0)) = Br(0) ∩ Z[κκκ] (see Figure 2.4).

Note that this definition of a digitization operator is rather theoretical but not compu-
tationally relevant in the case of the hexagonal grid. For readers who are interested in
implementing the digitization operator in the hexagonal lattice, we suggest the method
proposed by Her [31]. For the integer lattice a standard rounding function can be applied
to the real and imaginary parts.

2.5 Rigid Motions

Rigid motions on C are bijective isometric maps [36]; in particular, they preserve dis-
tances and angles. The set of rigid motions includes rotations (around the origin),
translations, and their compositions.

Chapter 2. Basic Notions 12

(a) (b)

Figure 2.4: Visualization of the digitization of a ball Br(0) of the radius r = 2
and centered at the origin with respect to Gaussian (a) and Eisenstein (b)
integers. The ball is marked in red and the corresponding sets of digitization
cells are filled with a green hatched pattern.

1
2 + 1

2 i

1
2 − 1

2 i− 1
2 − 1

2 i

− 1
2 + 1

2 i

1

i

0

(a)

ω−ω̄
3

1−ω̄
3

1−ω
3

ω̄−ω
3

ω̄−1
3

ω−1
3

0 1

ω

(b)

Figure 2.5: Visualization of digitization cells C1(0) for: Gaussian (a) and Eisen-
stein (b) integers. The dashed lines and the white balls represent elements which
do not belong to a digitization cell.

Let us consider arithmetic operations of complex numbers multiplication: θ · x and
addition: θ + x where θ = a + bi,x = c + di ∈ C. They have the following geometric
interpretations. On the one hand, θ · x is equal to a combination of a rotation by an
angle θ = arg(θ) = arctan

(
b
a

)
and a scaling by |θ| such that sin θ = b

|θ| and cos θ = a
|θ| .

On the other hand, θ+x = (a+ c)+(b+d)i can be seen as a translation in the complex

Chapter 2. Basic Notions 13

plane. This leads to defining rigid motions as∣∣∣∣∣∣ U : C → C
x 7→ θ · x + t,

(2.1)

where θ is a complex number of modulus |θ| = 1 and θ = arg(θ) is the corresponding
rotation angle. Later on, we restrict use of the symbols θ and t = t1 + t2i to denote
rotation and translation, respectively.

While working in R2, one usually wants to represent rigid motions as a matrix–vector
product followed by a vector addition. A rigid motion is then defined as a function∣∣∣∣∣∣ U : R2 → R2

x 7→ Rx + v
(2.2)

where v = (t1, t2) ∈ R2 is a translation vector and R is a rotation matrix which can be
obtained from the corresponding matrix representation of a complex number θ

R =

a −b
b a

 =

cos θ − sin θ
sin θ cos θ

 (2.3)

with θ ∈ [0, 2π) being its rotation angle. This leads to the representation of rigid motions
by a triplet of parameters (t1, t2, θ) ∈ R2 × [0, 2π). Within this manuscript we use both
definitions of rigid motions depending on the discussion context.

2.6 Digitized Rigid Motions

According to Equation (2.2), we generally have U(Z[κκκ]) * Z[κκκ]; in other words, a rigid
motion applied to a lattice maps it onto the set of complex numbers which are not
necessarily members of the lattice – expect for very specific choices of θ and t. As
a consequence, in order to define digitized rigid motions as maps from Z[κκκ] to Z[κκκ],
the most common solution is to apply rigid motions to a lattice as a part of C, and
then combine the results with a digitization operator. Then, digitized rigid motions are
defined by

U = D ◦ U|Z[κκκ]. (2.4)

Due to the behavior of D that maps C onto Z[κκκ], digitized rigid motions are, most of the
time, non-bijective. In other words, while any q ∈ C is associated to a unique preimage
p ∈ C, such that U(p) = q, q can be associated to several (resp. no) preimages p ∈ Z[κκκ]
for a digitized rigid motion U associated to U|Z[κκκ]. In such a case, U is non-injective
(resp. non-surjective). For a visualization we encourage readers to see Figure 2.6.

Chapter 2. Basic Notions 14

2 2

2

2

2

2

2

0 0

0

0 0

(a)

2

2

2

00 0

(b)

Figure 2.6: Examples of three different mappings induced by a rigid motion
U : digitization cells corresponding to zero and two preimages are marked by
green hatched and red dotted patterns, with their status numbers, respectively.
White dots indicate the positions of the images of the points of the initial set
Z[κκκ] under U .

Remark 2.3. Any r ∈ Z[κκκ] can have either 0, 1 or 2 preimages. In particular, when it
has two preimages, p and q, we have |p− q| = 1 [10, 19].

2.7 Rational Rotations

In the later chapters we focus on some properties of digitized rigid motions such as
bijectivity—to name one. We study such properties by employing some maps and study-
ing the set of their images. Indeed, the structure of the images of these maps is related
to the parameters of the underlying rigid motion. To begin we focus on the rotational
part of a rigid motion and define a group

G = Z
θ

|θ|
⊕ Z

θ

|θ|
· κκκ ⊕ Z⊕ Zκκκ

where θ ∈ Z[κκκ]ρ and κκκ ∈ {i,ω}.

Then we focus on these parameters of the underlying rigid motions under which G is a
lattice. We call digitized rigid motions which do lead to such cases rational.

The structure of G in the context of the digitized rotations defined on Z[i] has been
intensively studied by Nouvel and Rémila [11, 22]. Therefore, this section is mostly
devoted to digitized rigid motions defined on Z[ω]. Nevertheless, for completeness of

Chapter 2. Basic Notions 15

the discussion, in the first section we recall the well-known results and facts related to
the structure of G and Ḡ = G \ Z[i].

2.7.1 Pythagorean Rational Rotations

In a case of the square grid, it is known that only for rotations with rational cosine and
sine – i.e., rotations given by primitive Pythagorean triples, G is a lattice, and Ḡ is a
cyclic group [9, 11, 12]. When on the contrary, cosine or/and sine are irrational, the
images form an infinite and dense set, i.e. G is not a lattice [11, 22].

Proposition 2.4. The group G is a rank two lattice if and only if the corresponding
rotation matrix R is rational.

Corollary 2.5. If cos θ = a
c and sin θ = b

c where (a, b, c) is a primitive Pythagorean
triple, the group Ḡ = G/Z[i] is cyclic, |Ḡ| = c and its generators are ψψψ = p

c + q
c i and

φφφ = −q
c + p

c i, where p and q are the generators given in Lemma 2.1.

For more details and proofs see [11, 22] and the following discussion for the Eisenstein
rational rotations.

2.7.2 Eisenstein Rational Rotations

In this section we study digitized rotations related to primitive Eisenstein triples, i.e.
such that θ ∈ Z[ω]ρ. For easiness of the discussion in this section we consider the
matrix representation of rotations introduced in Section 2.2. We shall say that the
rotation matrix R is Eisenstein rational if it is of the following form

R =

 2a−b
2c −

√
3b

2c√
3b

2c
2a−b

2c

 = a

c

 1 0
0 1

+ b

c

 −1
2 −

√
3

2√
3

2
1
2


where (a, b, c) is an Eisenstein primitive triple. We must note that any rotation matrix
can be written in this way, with a, b, c real numbers with c =

√
a2 − ab+ b2, which are

not Eisenstein triples (and not even integers), in general.

We state the following result.

Proposition 2.6. The group G is a rank two lattice if and only if the rotation matrix
R is Eisenstein rational.

Proof. First, we note that the density properties of the underlying group is not af-
fected by affine transformations, i.e. a lattice (resp. dense group) is transformed into

Chapter 2. Basic Notions 16

another lattice (resp. dense group). Here we consider X =

 1 −1
2

0
√

3
2

−1

, so that

Z2 = {X(<(p),=(p)) | p ∈ Z[ω]}. Then we obtain

Ř = XRX−1 = X

 2a−b
2c −

√
3b

2c√
3b

2c
2a−b

2c

X−1 =

 a
c − b

c
b
c

a−b
c

 , (2.5)

and we study Ǧ = ŘZ (1
0) ⊕ ŘZ (0

1) ⊕ Z (1
0) ⊕ Z (0

1), instead of G. The generators of
Ǧ are given by the columns of the rational matrix B =

[
Ř
∣∣∣ I2

]
where I2 stands for the

2× 2 identity matrix. As B is a rational, full row rank matrix, it can be brought to its
Hermite normal form H = [T | 02,2]. The problem of computing the Hermite normal
form H of the rational matrix B reduces to that of computing the Hermite normal form
of an integer matrix: c ∈ Z is the least common multiple of all the denominators of B;
compute the Hermite normal form H′ for the integer matrix cB; finally, the Hermite
normal form H of B is obtained by c−1H′. The columns of H are the minimal generators
of Ǧ. The rank of B is equal to 2. Therefore, H gives a base (κ,λ), so that Ǧ = Zκ⊕Zλ.
As H′ gives an integer base, cǦ is an integer lattice. Finally, G = ZX−1κ⊕ ZX−1λ.

Conversely, let us prove that G is dense if (a, b, c) is not an Eisenstein primitive triple
(up to scaling). Again, we consider Ř = [b1 | b2], and we prove that for any ε > 0 there
exist e, e′ ∈ Ǧ, linearly independent, such that ‖e‖ < ε, ‖e′‖ < ε. Let {.} stand for
the fractional part function defined on R2. We study the images of {Zb1} ∈

[
−1

2 ,
1
2

)2
,

where b1 =
(

a/c
b/c

)
denotes the first column of Ř. If b1 contains irrational elements,

then {Zb1} contains infinitely many distinct points. By compactness of
[
−1

2 ,
1
2

]2
, we

can extract a subsequence ({nkb1})k∈N, converging to some point in
[
−1

2 ,
1
2

]2
. Thus,

the {(nk+1 − nk)b1} = {nk+1b1} − {nkb1} converge to (0, 0). In particular, we can find
integers m, p, q, where m = nk+1−nk for k large enough, such that e = mb1 +(p, q) ∈ Ǧ

has norm smaller than ε
3 . Note now that the second column of Ř satisfies b2 =

[
0 −1
1 −1

]
b1.

Then we claim that e′ =
[

0 −1
1 −1

]
e = mb2 + (−q, p− q) also lies in Ǧ, has norm less that

3‖e‖ (hence less than ε) and is linearly independent from e (the matrix having no
eigenvectors).

Consequently, b1 has rational coefficients, and we may take a, b, c integers with gcd equal
to one. Since cos θ = 2a−b

c and sin θ =
√

3b
2c , we conclude that these form an Eisenstein

primitive triple.

In the following, we focus on a subgroup of G obtained from the intersection with C1(0)
i.e., Ḡ = G/Z[ω] and its translation by t (modulo Z[ω]) denoted Ḡ′.

Chapter 2. Basic Notions 17

Corollary 2.7. If cos θ = 2a−b
2c and sin θ =

√
3b

2c where (a, b, c) is a primitive Eisenstein
triple, the group Ḡ = G/Z[ω] is cyclic and |Ḡ| = c.

Proof. Up to an affine transformation of (2.5), we may consider the quotient group
G̈ = Ǧ/Z2 and we note that for a primitive Eisenstein triple (a, b, c), any two integers
in the triple are coprime [34, p. 12]. Let us first give a characterization of G̈. From the
proof of Proposition 2.6, we know already that any element x ∈ Ǧ is a rational vector of
the form

(q1
c ,

q2
c

)
, q1, q2 ∈ Z. By definition, {x} ∈ G̈ if and only if there exist n,m ∈ Z

such that {x} = {nb1 +mb2}, i.e. there exist integers n,m, u, v such that
q1
c + u = na

c −m
b
c ,

q2
c + v = n b

c +ma−b
c

or equivalently,

 q1 + uc = an− bm,
q2 + vc = bn+ am− bm .

A linear combination of both lines yields directly bq1 − aq2 = c(−cm− bu+ av), hence
bq1−aq2 ≡ 0 (mod c) is a necessary condition. It is also sufficient. Indeed, let us suppose
that bq1−aq2 = kc, k ∈ Z. Then, since gcd(a, b) = 1, we know that the solutions to this
Diophantine equation are of the form (q1, q2) = `(a, b) + kc(β,−α), where αa + βb = 1
(Bézout identity) and ` ∈ Z. Consequently, (q1

c ,
q2
c) = `b1 + (kβ,−kα) lies in Ǧ.

Moreover, we deduce that G̈ is cyclic with generator b1. Finally, {`b1} = (0, 0) implies
`a = uc and `b = vc for some integers u, v. Applying the Gauss’s lemma to coprimes
a, c, we see that ` needs to be a multiple of c. Therefore, |G̈| = c.

2.7.3 Density of Eisenstein Rational Rotations

In the case of rational rotations given by Pythagorean triples it is known that they are
dense [16]. In other words, picking any angle θ it is always possible to find a Pythagorean
angle, which is as close to θ as one wishes. On the other hand, in the case of Eisenstein
rational rotations we provide the following result.

Lemma 2.8. Eisenstein rational rotations are dense.

Proof. Let θ ∈ R be any angle. Then there are u, v ∈ R such that θ = arg (u+ vω).
For a rational rotation to have an angle close to θ, we need α = a + bω ∈ Z[ω]ρ to
satisfy b

a ≈
v
u . The same reasoning holds for the square roots of α (see Chapter 5,

Lemma 5.2). Hence, we might as well work with γ = (s + t) + tω, and prove that the
ratio s+t

t takes a dense set of values in R. Equivalently, we prove that any number x
can be approximated with arbitrary precision by a ratio s/t where s, t ∈ Z, gcd(s, t) = 1
and s − t 6≡ 0 (mod 3). The first constraint is satisfied by the rational approximations
of a real number. There remains to show that we can choose s, t ∈ Z so that s − t 6≡ 0

Chapter 2. Basic Notions 18

(mod 3). Without loss of generality, we restrict to denominators t that are prime; since
these can be chosen arbitrarily large, the approximation property still holds.

Now consider s
t , s+1

t and s−1
t . For t large enough, they are all very close to x ∈ R, so

approximation is not an issue. Among these three numerators, only one can be equal
to 0 mod 3, and we consider the two remaining ones. Finally, we note that the two
numerators cannot be multiples of t, because their difference—which is equal to 1 or
2—would also be multiple of t.

Chapter 3

Local Alterations Induced by
Digitized Rigid Motions

In this chapter we develop theoretical tools necessary in the study of local alterations
induced by digitized rigid motions. In particular, we consider a neighborhood of p ∈ Z[κκκ]
and we focus on the issue of neighborhood alterations, by making a connection between
such alterations and the position of U(p) in a digitization cell. Though, several notations
are defined and used to explain the issue of the alterations we mostly use these notations
in the following chapters.

3.1 Neighborhood Motion Map

In the complex plane, an intuitive way to define a neighborhood of x ∈ C is to consider
the set of complex numbers that lie within a ball of a given radius centered at x. This
metric definition actually remains valid in the considered discrete spaces, where it allows
us to retrieve the classical notion of neighborhood based on adjacency relations.

Definition 3.1 (Neighborhood). The neighborhood of p ∈ Z[κκκ] (of squared radius r ∈
R+), denoted Nr(p), is defined as

Nr(p) =
{
p + d ∈ Z[κκκ] | |d|2 ≤ r

}
.

In order to track these local alterations of the neighborhood of Gaussian (resp. Eisen-
stein) integers, we introduce the notion of a neighborhood motion map, that is defined as
a set of elements of Z[κκκ], each representing information about a neighbor after a rigid
motion.

19

Chapter 3. Local Alterations Induced by Digitized Rigid Motions 20

Definition 3.2 (Neighborhood motion map). Let p ∈ Z[κκκ] and r ∈ R+. Let U : Z[κκκ]→
Z[κκκ] be a digitized rigid motion (see Section 2.6). The neighborhood motion map of p
with respect to U and r is the function defined as∣∣∣∣∣∣ G

U
r (p) : Nr(0) → N ′r(0)

d 7→ U(p + d)− U(p)

(with r′ ≥ r). Note that r′ is determined by r and the underlaying space. In other words,
GU

r (p) associates to each relative position of q = p + d ∈ Z[κκκ] in the neighborhood of
p, the relative position of the image U(q) in the neighborhood of U(p).

Note that a similar idea was previously proposed by Nouvel and Rémila [12] to track
local alterations of the neighborhood N1 defined on the square grid under 2D digitized
rotations.

Remark 3.3. For the sake of readability, we will consider a visual representation of the
GU

r (p) functions as label maps. A first—reference—map Lr will associate a specific label
to each element d = q − p of Nr(0) for a given squared radius r (see Figure 3.1(a–c),
for the maps L1 and L2 on Z[i] and L1 on Z[ω]). A second map LU

r (p)—associated to
GU

r (p), i.e. to p ∈ Z[κκκ] and a digitized rigid motion U—will associate, to each r ∈ N ′r(0),
the labels of all the points q ∈ Z[κκκ] such that r = U(q)−U(p). Such a set of labels for
each r may contain 0, 1 or 2 labels, due to the possible mappings under digitized rigid
motions (see examples in Figure 3.2).

3.2 Remainder Range Partitioning and Neighborhood Mo-
tion Maps

Digitized rigid motions U = D ◦ U|Z[κκκ] are piecewise constant, which is a consequence
of the nature of D. In other words, the neighborhood motion map GU

r (p) evolves non-
continuously according to the parameters of U|Z[κκκ] that underlies U . Our purpose is now
to express how GU

r (p) evolves.

Let us consider p + d ∈ Z[κκκ], in the neighborhood Nr(p) of p. From Formula (2.1) we
have

U(p + d) = θ · d + θ · p + t. (3.1)

We know that U(p) lies in a digitization cell C1(U(p)) centered at U(p), which implies
that there exists a value

ρ(p) = U(p)− U(p) ∈ C1(0).

Chapter 3. Local Alterations Induced by Digitized Rigid Motions 21

p

(a)

p

(b)

p

(c)

Figure 3.1: The reference label maps L1 and L2 for neighborhoods defined on
Z[i] (a–b) and L1 on Z[ω] (c).

p

(a)

p

(b)

p

(c)

Figure 3.2: Examples of label maps LU
r . (a) each digitization cell contains at

most one label: the rigid motion U is then locally injective. (b) one digitization
cell contains no label and is surrounded by four labels which in Lr form a square:
U is then non-surjective. (b–c) One digitization cell contains two labels: U is
then non-injective.

Definition 3.4. The coordinates of ρ(p), called the remainder of p under U , are the
fractional parts of the coordinates of U(p), and ρ is called the remainder map under U .

As ρ(p) ∈ C1(0), this range C1(0) is called the remainder range. Using ρ, we can rewrite
Equation (3.1) as

U(p + d) = θ · d + ρ(p) + U(p).

Without loss of generality, we can consider that U(p) is the origin of a local coordinate
frame of the image space, i.e. U(p) ∈ C1(0). In such a local coordinate frame the former
equation rewrites as

U(p + d) = θ · d + ρ(p).

Still, under this assumption studying the non-continuous evolution of the neighborhood
motion map GU

r (p) is equivalent to studying the behavior of U(p + d) = D ◦ U(p + d)
for d ∈ Nr(0) and p ∈ Z[κκκ], with respect to the rotation given by angle θ = arg(θ) and

Chapter 3. Local Alterations Induced by Digitized Rigid Motions 22

U(p + d)

U(p)

U(p + d)

U(p)

(a)

U(p + d)

U(p)

U(p + d)

U(p)

(b)

Figure 3.3: Critical cases: U(p + d) is located on a horizontal line of the square
grid (a) and a line segment of the hexagonal grid (b) i.e., a boundary of digiti-
zation cells.

the translation embedded in ρ(p) = x + yi ∈ C1(0), that deterministically depends on
(t,θ). The discontinuities of U(p + d) occur when U(p + d) is on the boundary of a
digitization cell (see Figure 3.3).

These critical cases related to U(p+d) can be observed via the relative positions of ρ(p),
which are formulated by the translation of the underlaying grid H =

⋃
p∈Z[κκκ]

∂C1(p), i.e.

H−θ ·d, that is to say C1(0)∩ (H− θ · d). Let us consider H−θ ·d for all d ∈ Nr(0) in
C1(0), namely H =

⋃
d∈Nr(0)

(H− θ · d). Then C1(0)∩H subdivides the remainder range

into regions—as illustrated in Figure 3.4—called frames. Note that in comparison with
the remainder range of the square grid, the geometry of the remainder range frames of
the hexagonal grid is relatively complex (see Figure 3.5). From the definition, we have
the following proposition.

Proposition 3.5. For any p,q ∈ Z[κκκ], GU
r (p) = GU

r (q) if and only if ρ(p) and ρ(q)
are in the same frame.

In other words, Proposition 3.5 tells us that there exist a unique link between a frame
and a neighborhood motion map. Note that a similar result—in the case of digitized
rotations on Z[i]—was provided by Nouvel and Rémila [11].

Chapter 3. Local Alterations Induced by Digitized Rigid Motions 23

H − θ

H + θ

H − θ · (−i)

H − θ · i

(a)

H − θ

H + θ

H − θ · (−i)

H − θ · i
H − θ · (−1 + i)

H − θ · (1 − i)

H − θ · (1 + i)

H − θ · (−1 − i)

(b)

H − θ

H − θ · (−ω̄)

H + θ

H − θ · ω

H − θ · (−ω)
H − θ · (−ω̄)

(c)

Figure 3.4: The remainder range C1(0) intersected with the translated (a–b)
square and (c) hexagonal grids H− θ · d,d ∈ Nr, r ∈ {1, 2}, for rotation angle
θ = π

12 . Each grid H − θ · d is colored with respect to each d ∈ Nr(0) in the
reference label map Lr (see Figure 3.2).

3.3 Set of Neighborhood Motion Maps

From the above discussion, it is plain that a partition of the remainder range given
by C1(0) ∩ H depends on the rotation angle θ = arg(θ). In order to detect the set
of all neighborhood motion maps for r = 1, 2, i.e. equivalence classes of rigid motions
U|Nr(p), we need to consider critical angles i.e., angles that lead to topological changes of
C1(0) ∩H. Indeed, from Proposition 3.5, we know that this is equivalent to computing
all different frames in the remainder range. Such changes occur when at least one frame
has a null area i.e., when at least two parallel line segments which bound a frame have
their intersection equal to at least a line segment. To illustrate this issue, let us consider
the minimal distance among the distances between all pairs of the parallel line segments
in the remainder range. Thanks to rotational symmetries by an angle of π

k —where k = 4
for the square and k = 6 for the hexagonal grids—and based on the above discussion, we
can restrict, without loss of generality, the parameter space of (x, y, θ) to C1(0)×

[
0, π

k

)
.

Chapter 3. Local Alterations Induced by Digitized Rigid Motions 24

(a) (b) (c)

Figure 3.5: Three different partitions of the remainder range C1(0), square (a–b)
and hexagonal (c) grids for rotation angle θ = π

12 . The partitions presented
in (a) and (c) are for N1(0), and in (c) for N2(0). Each frame-border color
corresponds to the color of each neighbor in the corresponding label maps (see
Figure 3.2).

Then, our goal is to observe the set of all distinct neighborhood motion maps

Mr =
⋃
U∈U

⋃
p∈Z[κκκ]

{
GU

r (p)
}
.

Square grid. As explained in the former sections the discontinuities of U(p+d) occur
when U(p + d) is on the boundary of a digitization cell, as illustrated in Figures 3.3.
Setting ρ(p) = x+ yi ∈ C1(0) and d = u+ vi ∈ Nr(0), this is formulated by one of the
following two equations

x+ u cos θ − v sin θ = kx + 1
2 (3.2)

y + u sin θ + v cos θ = ky + 1
2 (3.3)

where kx, ky ∈ Z. For given d = u + vi and kx (resp. ky), Equation (3.2) (resp. (3.3))
defines a vertical (resp. horizontal) line in the remainder range C1(0), called a vertical
(resp. horizontal) critical line.

Indeed, critical angles are such angles for which at least two critical lines are coincident.
Then, in the case of r = 1 there is only one critical angle π

6 , and for r = 2 and θ ∈
(
0, π

4
)

we have to consider four critical angles αn, n ∈ {1, 2, 3, 4}, each inducing change of the
order of critical lines. Note that, α0 = 0 and α5 = π

4 are also critical angles. Figure 3.6
provides a visualization of such critical cases.

The cardinality of Mr for r = 1 is equal to 34 and for r = 2 is equal to 231. It should be
also noticed that

∣∣ ⋃
p∈Z[i]

{
GU

r (p)
}∣∣ is constant: 25 when r = 1 and 81 when r = 2, for any

Chapter 3. Local Alterations Induced by Digitized Rigid Motions 25

0 π
6

π
4

−0.4

−0.2

0

0.2

0.4

θ

t 1

(a)

0 α1α2 α3 α4 π
4

−0.4

−0.2

0

0.2

0.4

θ

t 1

(b)

Figure 3.6: Partitions of the remainder range C1(0) by vertical critical lines for
N1(0) (a) and N2(0) (b), and 0 ≤ θ ≤ π

4 . For a better visualization effect,
critical lines are projected on the (t1, θ)-plane.

U , except for finitely many critical angles. For instance, we have
∣∣ ⋃

p∈Z[i]

{
GU

1 (p)
}∣∣ = 1

for θ = 0, 16 for θ = π
6 , and 9 for θ = π

4 .

Such elements of sets M1 and M2 are presented in Appendix A and Appendix B, respec-
tively. Each neighborhood motion map given in the appendices can be identified thanks
to indexes of associated frames of the remainder range. We can remark that neighbor-
hood motion maps are symmetric with respect to the origin—the frame of the index
(0, 0). For example, the neighborhood motion map of the index (−3, 4) is symmetric to
that of the index (3,−4) (see Figure B.1 in Appendix B).

Hexagonal grid. In the case of r = 1 there exist two critical angles between 0 and
π
6 , denoted by α1 and α2, with 0 < α1 < α2 <

π
6 . Note that the angles 0 and π

6 are also
critical and are denoted α0 and α3, respectively. On the one hand, Figure 3.7 provides
a plot of minimal distances between parallel line segments in the remainder range. A
critical angle happens when such a minimal distance is equal to zero. On the other hand,
Figure 3.5(c) presents a partition of the remainder range for an angle θ ∈ (α0, α1). The
cardinality of M1 is equal to 67, and we note that

∣∣ ⋃
p∈Z[ω]

{
GU

1 (p)
}∣∣ is constant: 49 for

any U , except for θ = αi, i ∈ {0, 1, 2, 3}. Indeed, we have
∣∣ ⋃

p∈Z[ω]

{
GU

1 (p)
}∣∣ = 1 for

θ = α0, 43 for θ = α1, 37 for θ = α2 and 30 for θ = α3. Such elements of the set M1 are
presented in Appendix C.

Note that neighborhood motion maps in Figure C.1 are arranged with respect to the
hexagonal lattice and each can be identified thanks to its axial coordinates [7]. We note

Chapter 3. Local Alterations Induced by Digitized Rigid Motions 26

α1 α2
π

6

θ

0.02

0.04

0.06

0.08

minimal distance

Figure 3.7: Visualization of minimal Euclidean distances between parallel line
segments in the remainder range for N1(0) and Z[ω].

that in such an arrangement neighborhood motion maps are symmetric with respect to
the origin—the frame of the index (0, 0). For example, the neighborhood motion map
of the index (−4, 3) is symmetric to that of the index (4,−3) (see Figure C.1).

3.4 Neighborhood Motion Maps Graph

Let us consider as well the dual of the remainder range partitioning—presented in Fig-
ure 3.5. In this graph G = {Mr, E}, each node is represented by a neighborhood motion
map (or a remainder range frame), while each edge between two nodes corresponds to a
line segment shared by adjacent frames in the remainder range. Moreover, each edge is
labeled with the color of the corresponding line segment (see Figure 3.4). We note that
an edge color denotes the color of a digitization cell in the label map, in the transition
between the two corresponding neighborhood motion maps. For instance, let us con-
sider the hexagonal grid and G = {M1, E}. Then if there exists a red horizontal edge
between two nodes then we observe a transition of the red neighbor i.e., d = 1, between
two neighborhood motion maps connected by this edge. We invite readers to verify in
Figure C.1 the neighborhood motion maps of the indexes (−1, 2) and (0, 2).

3.5 Non-surjectivity and Non-injectivity of Digitized Rigid
Motions

In this section, we identify zones of the remainder range (unions of frames) which exhibit
non-injectivity and non-surjectivity of the corresponding digitized rigid motions. This

Chapter 3. Local Alterations Induced by Digitized Rigid Motions 27

allows us to compare the loss of information induced by digitized rigid motions defined
on the square and hexagonal grids.

Square grid. Having computed the sets M1 and M2 we can observe that some frames
of the remainder range correspond to neighborhood motion maps that exhibit non-
surjectivity or non-injectivity of corresponding digitized rigid motions. Let us first pro-
vide some important details about the remainder range frames.

Neighborhood motion maps for N2(p) defined on the square grid, which present non-
surjectivity can be found in Appendix B. As can be noted from the figures in Appendix B,
such neighborhood motion maps possess at least one non-labeled Gaussian integer w
(white square) that is surrounded by four labeled Gaussian integers at N1(w), whose
preimages form a 2 × 2 square (see the neighborhood motion map of the frame (0, 0)
for their preimages). For example, see the frames (2,−3), (3,−3), (2,−4) and (3,−4),
depicted in Figure B.1. Using this observation and Equations (3.2–3.3) we state the
following lemma.

Lemma 3.6. Let us consider the square grid, U(p) + d$ has no preimage if and only if
ρ(p) is in one of the zones f0

$ (union of frames themselves) defined as follows:

f0
↑ =

[1
2 − cos θ, sin θ − 1

2

)
⊕
[(3

2(− cos θ − sin θ)
)
,
1
2

)
i,

f0
→ =

[3
2 − cos θ − sin θ, 1

2

)
⊕
[(1

2 − sin θ
)
,

(
cos θ − 1

2

))
i,

f0
↓ =

[1
2 − sin θ, cos θ − 1

2

)
⊕
[
−1

2 ,
(

cos θ + sin θ − 3
2

))
i,

f0
← =

[
−1

2 , cos θ + sin θ − 3
2

)
⊕
[(1

2 − cos θ
)
,

(
sin θ − 1

2

))
i,

where $ ∈ {↑,→, ↓,←} and d↑ = (0, 1),d→ = (1, 0),d↓ = (0,−1),d← = (−1, 0).

The non-surjective zones are defined by three critical lines given by N1(0) and one given
by N2(0).

Neighborhood motion maps which present non-injectivity can be observed in Ap-
pendix A. They have two labels at the center. For instance, see the frames of the indexes
(2, 2), (2, 1) and (2, 0) in Figure A.1. Using this observation and Equations (3.2–3.3) we
state the following lemma.

Chapter 3. Local Alterations Induced by Digitized Rigid Motions 28

Lemma 3.7. U(p) has two preimages which are p and p + d$, i.e. U(p) = U(p + d),
if and only if ρ(p) is in one of the zones f2

$ defined as follows:

f2
↑ =

[
sin θ − 1

2 ,
1
2

)
⊕
[
−1

2 ,
(1

2 − cos θ
))

i,

f2
→ =

[
−1

2 ,
1
2 − cos θ

)
⊕
[
−1

2 ,
(1

2 − sin θ
))

i,

f2
↓ =

[
−1

2 ,
1
2 − sin θ

)
⊕
[(

cos θ − 1
2

)
,
1
2

)
i,

f2
← =

[
cos θ − 1

2 ,
1
2

)
⊕
[(

sin θ − 1
2

)
,
1
2

)
i.

We can characterize the non-surjectivity and non-injectivity of a digitized rigid motion
by the presence of ρ(p) in these specific zones. Both types of zones are presented in
Figure 3.8. For proofs of Lemmas 3.6 and 3.7 we refer to Nouvel and Rémila [22].

Hexagonal grid. The set of the neighborhood motion maps M1, presented in Ap-
pendix C, allows us to identify the non-injective zones of the remainder range. For
instance, the frames related to neighborhood motion maps of the axial coordinates:
(−2, 4), (−1, 4) and (0, 3) (see Figure C.1) constitute a case of such a zone for rotational
angles in (α0, α1). Based on this observation, we can characterize the non-injectivity of
a digitized rigid motion by the presence of ρ(p) in these specific zones (illustrated in
Figure 3.8(b)).

Conjecture 3.8. Let C6 stand for the 6-fold discrete rotational symmetry group. Given
U ∈ U, U(p),p ∈ Z[ω], has two preimages p and p + d,d ∈ N1(p), if and only if ρ(p)
is in one of the zones ck(f), ck ∈ C6, where f is the parallelogram region whose vertexes
are:

(cos θ − 1) + cos θ√
3
i,

1√
3
i,

1
2
(
2− cos θ −

√
3 sin θ

)
+ 1

6
(√

3 cos θ + 3 sin θ
)
i,

1
2
(
cos θ −

√
3 sin θ

)
+ 1

6
(
3 sin(θ) + 3

√
3 cos(θ)− 2

√
3
)
i.

3.6 Preservation of Information

In this section, we use the result of the previous section in order to compare the loss of
information induced by rigid motions on the square and hexagonal grids. Indeed, we aim
to determine on which type of grid digitized rigid motions preserve more information.

Chapter 3. Local Alterations Induced by Digitized Rigid Motions 29

f2
↓

f2
↑

f2
→

f2
←

f0
↑

f0
→

f0
↓

f0
←

(a)

f

c1(f)

c2(f)

c3(f)

c4(f)

c5(f)

(b)

Figure 3.8: Examples of remainder range partitioning. The square remainder
range together with non-injective zones f2

$ and non-surjective zones f0
$ which

are illustrated by the red and brown rectangles, respectively (a). The hexagonal
remainder range together with non-injective zones ck(f) marked by hatched
zones (b).

In accordance with the discussion in Chapter 2 and the similar discussion for the square
grid in [11, 37], the density of images of the remainder map ρ in the non-injective zones
is related to the cardinality and the structure of the group Ḡ = G \ Z[κκκ] of the images
of ρ. On the one hand, when Ḡ is dense, it is considered as the ratio between the area of
non-injective zones ck(f), k = 1, . . . , 6 (resp. f2

$), and the area of the remainder range
[37]. On the other hand, when Ḡ forms a lattice, it is estimated as |Ḡ∩ck(f)|

c , k = 1, . . . , 6
(resp. |Ḡ∩F|c ,F = f2

↑ ∪ f2
→ ∪ f2

↓ ∪ f2
←), where c is an element of a primitive Eisenstein

(resp. Pythagorean) triple i.e., |Ḡ| [37].

Nevertheless, to facilitate, our study we will consider the ratio between the areas as an
approximation of the information loss measure. Indeed, the rotations induced by prim-
itive Eisenstein (resp. Pythagorean) triples are dense; one can always find a relatively
near rotation angle such that c is relatively high. The area-ratio density measure can
be then seen as a limit for the cardinality based ratio. Figure 3.9 presents curves of the
area ratios for the square and hexagonal grids.

We also measure the loss of information for different sampled rotations and the following
finite sets Sκκκ = Z[κκκ] ∩ [−100, 100] ⊕ [−100, 100]i. In this setting, we use 1 − |U(Sκκκ)|

|Sκκκ | as
a measure of the information loss. They are plotted in Figure 3.9. We note that the
experimental results follow the area-ratio measure, that provides consequently a good
approximation1. The obtained results allow us to conclude that digitized rigid motions

1Similar attempt was made in [15], but with a different approach of measuring.

Chapter 3. Local Alterations Induced by Digitized Rigid Motions 30

xxx
x

x

xx

x

x

x

x

x

x

x

x

x
x

x
x

x
xxxxxxxx

x
x

x
x

x

x

x
x

x

x

x

x

x

x
x

x
x

xxxooo
o

o
o

o
o

o
o

o
o

o
o

ooooo
o

o

o
o

o
o

o
o

o
o

ooooo
oo

o
o

o
o

oo
oo

ooo
o

π

12

π

6

π

4

π

3

5 π

12

π

2

θ

0.05

0.10

0.15

Information loss rate

Figure 3.9: Comparison of the loss of information induced by digitized rigid
motions on the hexagonal and square grids. The red and blue curves correspond
to the ratios between areas of non-injective zones and the remainder range for
the square and hexagonal grids, respectively. The “x” (resp. “o”) markers
correspond to the values of the information loss rate 1− |U(Si)|

|Si| (resp. 1− |U(Sω)|
|Sω |).

on the hexagonal grid preserve more information than their counterparts defined on the
square grid.

3.7 Future Work and Conclusion

In the chapter, we have extended the notion of neighborhood motion maps to rigid
motions and any neighborhood defined on either the regular hexagonal or the square
grid. The framework was previously proposed by Nouvel and Rémila [22] for digitized
rotations and 4-neighborhood defined on the square grid. In the next chapters we have
shown that these notions are useful to characterize the bijectivity of rigid motions on
Z[κκκ].

One problem which we have not yet tackled is related to a use of neighborhood motion
maps in image processing applications in order to speed up digitized rigid motions. The
principal of such an idea is based on an observation that having computed a neighbor-
hood motion map of p ∈ Z[κκκ] we known, once and for all, the relative positions of the
points in Nr(p) under U . Therefore, having computed the set M2 and representing it as
a lookup table will allow us to reduce the number of points of such digital sets to which
it is necessary to directly apply a digitized rigid motion. The position of the remaining
points can be then obtained via neighborhood motion maps. We call this approach

Chapter 3. Local Alterations Induced by Digitized Rigid Motions 31

Nozick motions2. In the current stage, we are working on an optimal implementation of
the Nozick motion algorithm.

As a part of our future research we also plan to extend the study of non-surjective
digitized rigid motions to the hexagonal grid. Indeed, if the same approach as for the
square grid is followed, this would require to compute the neighborhood motion maps
of N4(p),p ∈ Z[ω].

Finally, for a sake of completeness of the study we would like to provide an extended
comparison of the information loss between digitized rigid motions defined on the all
three regular grids, i.e. the triangular, the square and the hexagonal grids.

2This is dedicated to Vincent Nozick of the University Paris-Est Marne-la-Vallée who many times
asked us interesting questions about possible practical applications of our work.

Chapter 4

Bijective Digitized Rigid Motions
on Square Grid

Due to digitization, digitized rigid motions do not preserve distances and bijectivity
is generally lost. Nevertheless, some of them are globally bijective or bijective when
restricted to some finite digital sets.

In this chapter we first extend the characterization of bijective digitized rotations [22]
to the case of digitized rigid motions i.e., rotations followed by translations and a dig-
itization operation. We restrict then to the practical problem of verifying whether a
prescribed subset of Z[i] is transformed bijectively (or more precisely injectively) by a
digitized rigid motion. To this end, the local approach of neighborhood motion maps is
well suited and leads to an algorithmic answer. More concretely, two different algorithms
are proposed. The performance of each depends on the ratio of the finite set size to the
complexity of the rigid motion, measured by the integers of the Pythagorean triples.

This algorithmic approach can be extended for finding, for a given subset S ⊂ Z[i] and
an injective rigid motion on S, a range of nearby parameter values ensuring injectivity,
thereby offering a stability result. This is done by extending the concept of hinge angles
of digitized rotations [1, 25, 32] to digitized rigid motions.

4.1 Globally Bijective Digitized Rigid Motions

A digitized rigid motion is bijective if and only if there is no ρ(p) for all p ∈ Z[i] in
non-surjective and non-injective zones of C1(0). In this section, we characterize bijective
rigid motions on Z[i] while investigating such local conditions.

33

Chapter 4. Bijective Digitized Rigid Motions on Square Grid 34

Let us start with the rotational part of the motion. When the group G (see Chapter 2)
is not a lattice, then we have the following.

Lemma 4.1. If G is not a lattice then the corresponding digitized rotation given by θ

is not bijective.

Proof. Since G is dense then an intersection of Ḡ = G \ Z[i] with non-injective (resp.
non-surjective) zones of the remainder range is nonempty.

In the other words, for rotations with angles of irrational sine or cosine ∃p ∈ Z[i] such
that ρ(p) lies in a non-surjective and/or non-injective zone of C1(0). This result is also
applied to U , whatever translation part is added. Therefore, we focus on rigid motions
which are given by Pythagorean rational rotations discussed in Chapter 2.

When U contains a translation part, the images of ρ in C1(0), which we denote by Ḡ′,
is obtained by translating Ḡ (modulo Z[i]), and |Ḡ′| is equal to the order of Ḡ – its
underlying group. Then, we state the following proposition.

Proposition 4.2. A digitized rational rotation is bijective (the intersection of Ḡ with
non-injective and non-surjective regions is empty) if and only if its angle comes from a
twin Pythagorean triple, i.e. a primitive Pythagorean triple (see Lemma 2.1) with the
additional condition on the generators that p = q + 1.

For more information about the bijective digitized rotations and their characterization
we encourage readers to consult Nouvel and Rémila [22], or more recent results by
Roussillon and Cœurjolly [24].

Our question is then if a digitized rigid motion can be bijective, even though the corre-
sponding rotation is not. In order to answer this question we use the following equiva-
lence property.

Property 4.3 (Nouvel and Rémila [22]). Digitized rational rotations are bijective if they
are surjective or injective.

Indeed, Property 4.3 allows us to focus only on non-surjective zones; since they are
squares, they provide symmetry and then present interesting properties in terms of
exact computing.

Proposition 4.4. A digitized rigid motion whose rotational part is given by a non-twin
primitive Pythagorean triple is always non-surjective.

Chapter 4. Bijective Digitized Rigid Motions on Square Grid 35

Proof. We show that no translation factor can prevent the existence of an element of Ḡ′

in a non-surjective zone. We consider the length of a side of f0
$, given by L1 = 2q(p−q)

c ,
and the side of the bounding box of a fundamental square in Ḡ, given by L2 = p+q

c (see
[22]), where p and q are generators of the corresponding primitive Pythagorean triple
(see Lemma 2.1). Note that any non-surjective zone f0

$ also forms a square. Then by
comparing L1 with L2, we have that, as p > q + 1, L2 < L1, and thus Ḡ′ ∩ f0

$ 6= ∅ (see
Figure 4.1(a)).

If, on the contrary, the rotational part of the rigid motion is given by a twin Pythago-
rean triple, i.e. is bijective, then the rigid motion is also bijective, under the following
condition. Note that ψψψ and φφφ are the same as in Corollary 2.5.

Proposition 4.5. A digitized rigid motion is bijective if and only if it is composed
of a rotation by an angle defined by a twin Pythagorean triple and a translation t =
t′ + Zψψψ + Zφφφ, where t′ ∈

(
− 1

2c ,
1
2c

)
⊕
(
− 1

2c ,
1
2c

)
i.

Proof. Let us first consider the case t = 0. Since L2 > L1, there exists a fundamental
square in Ḡ, i.e. a square whose vertexes are (nφφφ+mψψψ), ((n+1)φφφ+mψψψ), ((n+1)φφφ+(m+
1)ψψψ), (nφφφ+ (m+ 1)ψψψ), where n,m ∈ Z. Note that the vertexes lie outside of f0

↓ , at N∞
distance 1

2c (see Figure 4.1(b) and the proof of Theorem 5 in [22]). Now, let us consider
the case t 6= 0. The above four vertexes are the elements of Ḡ closest to f0

↓ , therefore
if N∞({t}) < 1

2c , where {.} stands for the fractional part function, then Ḡ′ ∩ f0
↓ = ∅.

Moreover, if N∞({t}) is slightly above 1
2c , then it is plain that some element of Ḡ′ will

enter the frame f0
↓ . But Ḡ is periodic with periods φφφ and ψψψ, so that the set of admissible

vectors t has the same periods. Then, we see that the admissible vectors form a square
(i.e. a N∞ ball of radius 1

2c) modulo Zψψψ + Zφφφ (see Figure 4.1(c)).

4.2 Locally Bijective Digitized Rigid Motions

As seen above, the bijective digitized rigid motions, though numerous, are not dense in
the set of all digitized rigid motions. Thus, we may generally expect defects, such as
Gaussian integers with two preimages. However, in practical applications, the bijectivity
of a given U on the whole Z[i] is not the main issue; rather, one usually works on a finite
subset of the plane e.g., a square digital image. The relevant question is then: “given a
finite subset S ⊂ Z[i], is U restricted to S bijective?”. Actually, the notion of bijectivity
in this question can be replaced by the notion of injectivity, since the surjectivity is
trivial, due to the definition of U that maps S to U(S).

Chapter 4. Bijective Digitized Rigid Motions on Square Grid 36

2q(p−q)
c

(p+q)
c

2
q

(
p

−
q

)
c

(
p

+
q

)
c

1 − 3i

2 − i

−3i

1 − 2i

−1 + i

−1

1 − i
−2

−2 − i

2 − 2i

−2i

−2 − 2i

−3

−2 + i

2 − 3i

−3 − 2i

3

1

−i

−1 − i

−3 − i

−1 − 2i

2

3 + 2i

i

1 + i

2 + i

3 + i

−2 + 2i

−1 + 2i

2i

1 + 2i

2 + 2i

−2 + 3i

−1 + 3i

3i

(a)

2q(p−q)
c

(p+q)
c

2
q

(
p

−
q

)
c

(
p

+
q

)
c

w
s

r

c

1 + i)

−2 + 2i

−1 − 2i

2 + i

1 + 2i

−2

−2i
−i

1 − i

−1 + i

−2 + i

1

2

−1

2i
i

−3i

3i

−3

3

(b)

f0
↓

(c)

Figure 4.1: Examples of non-surjective frames in the remainder range together
with Ḡ obtained for rotations by Pythagorean angles. (a) The non-bijective dig-
itized rotation defined by the primitive Pythagorean triple (12, 35, 37), and (b)
the bijective digitized rotation defined by the twin Pythagorean triple (7, 24, 25).
The non-surjective zones are illustrated by brown rectangles. (c) a fundamental
square in Ḡ whose vertexes are (nφφφ+mψψψ), ((n+ 1)φφφ+mψψψ), ((n+ 1)φφφ+ (m+
1)ψψψ), (nφφφ+(m+1)ψψψ), represented by black circles, and f0

↓ in brown. The union
of the areas filled with a hatched pattern forms a square (i.e. a N∞ ball of radius
1
2c) of the admissible translation vectors modulo Zψψψ + Zφφφ. Note that c, r, s,w
are elements of Ḡ which surround a non-surjective zone of the remainder range.

The basic idea for such local bijectivity verification is quite natural. Because of its quasi-
isometric property, a digitized rigid motion U can send at most two 4-neighbors—two
Gaussian integers such that their digitization cells share an edge—onto the same point.
Thus, the lack of injectivity is a purely local matter, suitably handled by the neigh-
borhood motion maps via the remainder map. Indeed, in accordance with Lemma 3.7,
U is non-injective, with respect to S if and only if there exists p ∈ S such that ρ(p)
lies in the union F = f2

↓ ∪ f2
↑ ∪ f2

← ∪ f2
→ of all non-injective zones. We propose two

algorithms making use of the remainder map information, as an alternative to a brute
force verification.

Chapter 4. Bijective Digitized Rigid Motions on Square Grid 37

The first—forward—algorithm, checks for each p ∈ S, the inclusion of ρ(p) in one of the
non-injective zones of F . The second—backward—algorithm first finds all w in Ḡ′ ∩ F ,
called the non-injective remainder set, and then verifies if their preimages ρ−1(w) are
in S.

Both algorithms apply to rational motions i.e., with a Pythagorean angle given by a
primitive Pythagorean triple (see Chapter 2) and a rational translation t = t1 + t2i with
t1, t2 ∈ Q. We capture essentially the behavior for all angles and translation vectors,
since rational motions are dense and S is finite, so that a close-enough angle yields an
identical result. These assumptions guarantee the exact computations of the algorithms,
which are based on integer numbers. Methods for angle approximation by Pythagorean
triples up to a given precision may be found in [16, 17].

4.2.1 Forward Algorithm

The strategy consists of checking whether the image of each p ∈ S under the remainder
map ρ(p) belongs to one of the non-injective zones f2

$ defined in Lemma 3.7; if this is
the case, we check additionally if p + d$ ∈ N1(p) belongs to S; otherwise, there is no
non-injective mapping involving p under U|S .

This leads to the forward algorithm (see Algorithm 1), which returns the set B of all
pairs of points having the same image. We can then conclude that U|S is bijective if and
only if B = ∅; in other words, U is injective on S \ B. The break statement on line 7
comes from the fact that, in accordance with Remark 2.3, a Gaussian integer can have
at most two preimages. Using the same argument, we also restrict the internal loop to
the set {→, ↓}.

Algorithm 1: An element-wise injectivity verification of U|S .
Data: A finite set S ⊂ Z[i]; a digitized rigid motion U .
Result: The subset B ⊆ S whose points are not injective under U .

1 B ← ∅
2 foreach p ∈ S do
3 foreach $ ∈ {→, ↓} do
4 if p + d$ ∈ S and ρ(p) ∈ f2

$ then
5 B ← B ∪ {{p,p + d$}}
6 S ← S \ {p,p + d$}
7 break

8 return B

The main advantage of the forward algorithm lies in its simplicity. In particular, we can
directly check which neighbor p + d$ of p has the same image under a digitized rigid

Chapter 4. Bijective Digitized Rigid Motions on Square Grid 38

(a) (b) (c)

Figure 4.2: (a) an initial finite set S ⊂ Z[i], colored in black and red. (b) the
remainder map image of S, i.e. ρ(p) for all p ∈ S, under U—given by parameters(

1
4 , arccos 35

37

)
. Since no point ρ(p) lies within the non-injective zone F , we have

a visual proof that U restricted to S is injective. (c) the image of S under the
digitized rigid motion colored in black and blue. In (c) the Gaussian integer in
the middle of the blue square has coordinates 3 + 5i and it is an image, under
U , of the Gaussian integer 1+6i, which is at the center of the red square in (a).

motion. Because rational rigid motions are exactly represented by integers, it can be
verified without numerical error in constant time, whether or not ρ(p) ∈ F . The time
complexity of this algorithm is O(|S|). Figure 4.2 illustrates the forward algorithm.

Remark 4.6. The forward algorithm can be used with non-rational rigid motions, at the
cost of a numerical error.

4.2.2 Backward Algorithm

In this section, we consider a square finite set S as the input; this setting is not abnormal,
as we can find a square bounding box for any finite set. The strategy of the proposed
backward algorithm consists of: Step 1: for a given U , i.e. a Pythagorean triple and a
rational translation, enumerate all the elements w ∈ Ḡ′ in the non-injective zones and
obtain W = {w | w ∈ Ḡ′ ∩ F}; Step 2: compute the set of all the preimages, i.e.,
W−1 = {ρ−1(w) | w ∈W}; Step 3: determine among them those in S, i.e. S ∩W−1.

Step 1

As explained in Chapter 2, the cyclic group Ḡ is generated byψψψ = p
c + q

c i and φφφ = − q
c + p

c i,
and Ḡ′ is its translation (modulo Z[i]). Therefore, all the points in Ḡ′ can be expressed
as {Zψψψ + Zφφφ + t}, where {.} stands for the fractional part function defined on C. To
find these elements of Ḡ′ in the non-injective zones, let us focus on f2

↓ , which was given
in Lemma 3.7. (Note that a similar discussion is valid for any other non-injective zones

Chapter 4. Bijective Digitized Rigid Motions on Square Grid 39

given by Lemma 3.7). The set of remainder points {Zψψψ + Zφφφ + t} lying in f2
↓ is then

formulated by the following four linear inequalities—critical lines bounding f2
↓—and we

define the non-injective remainder index set C↓ such that

C↓ =

(u, v) ∈ Z2

∣∣∣∣∣∣
−1

2 < {
p
cu−

q
cv + <(t)} < 1

2 −
2pq

p2+q2 ,(
p2−q2

p2+q2 − 1
2

)
< { q

cu+ p
cv + =(t)} < 1

2

 . (4.1)

Solving the system of inequalities in Equation (4.1) consists of finding all pairs (u, v) ∈ Z2

inside the given rectangle. This is carried out by mapping {Zψψψ + Zφφφ+ t} to Z2 using a
similarity, denoting by f̂2

↓ the image of f2
↓ under this transformation (Figure 4.3).

To determine all the integer points in (u, v) ∈ C↓, we first consider the upper and
lower corners of the rectangular region f̂2

↓ given by Equation (4.1), i.e.
(

p−3q
2 , p−q

2

)
and(

q−p
2 , p+q

2

)
. Then, we find all the horizontal lines v = k where k ∈ Z ∩

(
p−q

2 , p+q
2

)
. For

each line v = k, we obtain the two intersections with the boundary of f̂2
↓ as the maximal

and minimal integers for u (see Figure 4.3(a)).

The complexity of this step depends on the number of integer lines crossing f̂2
↓ , which

is q, and thus it leads to O(q).

u
−2−3 1−1

2

1

4

5
v

(a) (b)

Figure 4.3: (a) geometric interpretation of the system of linear inequalities in
Equation (4.1), in the (u, v)-plane for (p, q) = (7, 2). The region surrounded by
the four lines is f̂2

↓ , and the integer points within are marked by black circles.
(b) The remainder range, Ḡ′ and f2

↓ , with the later illustrated by a red square,
which corresponds to f̂2

↓ in (a).

Chapter 4. Bijective Digitized Rigid Motions on Square Grid 40

Step 2

We seek the set of all preimages of {uψψψ + vφφφ + t} for each (u, v) ∈ C↓, or equivalently,
preimages of uψψψ + vφφφ by the translationless remainder map (the fact that this point is
in f2

↓ plays no role in this step). This is a Diophantine system (modulo Z2), and the set
of preimages of a point {uψψψ + vφφφ+ t} is given by a sublattice of Z2.

Lemma 4.7. Let (u, v) stands for the index of an element of Ḡ. Then all preimages of
uψψψ + vφφφ form a lattice

T(u, v) = p
µ− v

2 (u+ vi) + Z(b+ ai) + Z(σ + τi)c, (4.2)

where µ and ν are Bézout coefficients of the identity µp2 + νq2 = 1 such that µ± ν ≡ 0
(mod 2), and σ and τ are Bézout coefficients of the identity aσ + bτ = 1.

Proof. First, we start by looking for preimages of ψψψ = p
c + q

c i, and by using the fact that
Ḡ is cyclic we consider x̄ ∈ Z and try to solve

a
c x̄ ≡

p
c (mod 1)

b
c x̄ ≡

q
c (mod 1)

or

ax̄ ≡ p (mod c)

bx̄ ≡ q (mod c)
.

The first equation is solved using Bézout identity. Then, using the fact that c − a =
2q2, c+ a = 2p2, and µp2 + νq2 = 1 since gcd(p2, q2) = 1, we find that

1 = µp2 + νq2 = µ
c+ a

2 + ν
c− a

2 ,

and we observe that by rearranging the terms of the right-hand side we obtain

1 = a
µ− ν

2 + c
µ+ ν

2 .

Next, ax̄ ≡ p (mod c) if and only if ax̄+ cz = p for some z ∈ Z, and then the solutions
are of the form x̄ = pµ−ν

2 +kc, for some k ∈ Z with µ = µ0 + ck and ν = ν0−ak. Where
µ0 and ν0 are some initial coefficients found using Extended Euclidean Algorithm. Here
we assume that µ and ν are odd thus µ± ν ≡ 0 (mod 2). We can make this assumption
because (i) p − q ≡ 1 (mod 2), and (ii) because the Bézout coefficients are not unique
and if µ and ν are not both odd we can replace them with a pair (µ+ q2, ν − p2).

Then we check the second equation bx̄ ≡ q (mod c).

bx̄ ≡ 2p2q
µ− ν

2 = q(p2µ− p2ν) = q(1− q2ν − p2ν) = q − cν ≡ q (mod c).

Chapter 4. Bijective Digitized Rigid Motions on Square Grid 41

Figure 4.4: Visualization of T for u = 1, v = 0 (green points) and p = 2, q = 1.
The blue and black arrows represent c(σ, τ)t and (b, a)t, respectively.

The solution is then pµ−ν
2 + kc. In a similar way it can be verified for φφφ = −q

c + p
c i and

ȳi, ȳ ∈ Z.

Second, we solve for ax̄− bȳ ≡ 0 (mod c)

bx̄+ aȳ ≡ 0 (mod c)
.

We have that gcd(a, b) = 1 and therefore the following Bézout identity aσ + bτ = 1 has
solutions, and we have that x̄ = σck and ȳ = −τck. Therefore, the second equation is
satisfied modulo c. But we want both of them to be satisfied, i.e. we want ax̄− bȳ = ck

to be also true. Let us focus on ax̄ = bȳ. This is true when x̄ = bz and ȳ = az. By
putting all together we obtain x̄ = σck + bz and ȳ = −τck + az. We then check

a(σck + bz)− b(−τck + az) = aσck + abz + bτck − baz = aσck + bτck,

and we see that the right-hand side is satisfied due to Bézout identity and

b(σck + bz) + a(−τck + az) = bσck + b2z − aτck + a2z = ck(bσ − aτ) + c2z,

is also satisfied indeed modulo c. This leads us to the result.

The time complexity of finding µ and ν (resp. σ and τ) is O(log q) (resp. O(log min(a, b))
[38]. As the Bézout coefficients are computed once for all (u, v) ∈ C↓, the time complexity
of Step 2 is O(log q) + O(log min(a, b)) = O(log min(a, b)).

Chapter 4. Bijective Digitized Rigid Motions on Square Grid 42

Step 3

We now consider the union of lattices T(u, v) for all couples (u, v) in C↓ obtained in
Step 1. To find their intersection with S, we apply to each an algorithm similar to
Step 1 – with an affine transformation mapping the basis b + ai, c(σ + τi) to 1, i and
pµ−v

2 (u+ vi) to 0, respectively. Thus, a square S maps to a quadrangular Ŝ after such
an affine transformation, and we find the set of Gaussian integers in Ŝ. Note that the
involved transformation is the same for all the lattices, up to a translation.

The complexity of listing all the preimages is given by |C↓| times the number of horizontal
lines v = k, k ∈ Z, intersecting Ŝ, denoted by K. The cardinality of C↓ is related to
the area of f2

↓ given by 2q2(p−q)2

(p2+q2)2 , which cannot be larger than 3
2 −
√

2. As |Ḡ′| = c and
|C↓| = |Ḡ′ ∩ f2

↓ |, |C↓| ≤ (3
2 −
√

2)c. On the other hand, K is bounded by dS/c, where
dS stands for the diagonal of S. As the complexity of dS is given by O(

√
|S|), the final

complexity of Step 3 is O(
√
|S|).

Remark 4.8. A possible refinement consists of ruling out false positives at border Gaus-
sian integers p of S, by checking if p + d$ belongs to S, where d$ is given by the above
procedure. Thus, avoiding the case when p and p + d$ are mapped to the same point
but p + d$ is not in S. This can be achieved during Step 3.

All the steps together allow us to state that the backward algorithm, whose time com-
plexity is O(q+ log min(a, b) +

√
|S|), identifies non-injective Gaussian integers in finite

square sets.

Remark 4.9. Even though the backward algorithm works with squares, one can approx-
imate any set S by a union of squares and run the backward algorithm on each of them.
There can be false positives; however these can be discarded one-by-one by verifying
whether they lie in S or not.

The proposed algorithms differ from a simple injectivity verification, which can be im-
plemented using a multimap as a data structure such that each key represents a point
of the transformed space and each value associated with a single key represents a set
of its preimages. Since the usual complexity of operations defined on a multimap is
O(logn)—n standing for the number of keys—this strategy provides a linear time com-
plexity with respect to the size of the input digital set; nevertheless, it requires more
memory than the forward or backward algorithms. Note that from a practical point of
view the choice between the forward and the backward algorithm depends on the size
of the input digital set S and the parameters’ values of the rational rotation. Indeed,
when the cardinality of S is relatively low and the cardinality of Ḡ (actually Ḡ′ ∩ F)

Chapter 4. Bijective Digitized Rigid Motions on Square Grid 43

is relatively high, the forward algorithm is usually a better choice than the backward
algorithm and vice versa1.

4.3 Finding a Local Bijectivity Angle Interval

The algorithms discussed in the previous section can verify if a digitized rigid motion
restricted to a finite digital set S ⊂ Z[i] is bijective. Such a digitized rigid motion is
given by a triplet of parameters (t1, t2, θ)—where θ is a Pythagorean angle and t1, t2 ∈ Q
represent a rational translation. In this section, we consider the problem of finding a
range of parameters such that the corresponding digitized rigid motions remain bijective
when restricted to S. More precisely, we start with a given digitized rigid motion which
is bijective when restricted to S, and we focus on finding neighboring values around the
triplet (t1, t2, θ) under the condition that each digitized rigid motion from this range
ensures bijectiviy on S.

Such a problem can be seen as an optimization problem, namely, finding a maximal
ball Bε((t1, t2, θ)) of radius ε, centered at a point (t1, t2, θ) and placed in the space[
−1

2 ,
1
2

)2
×
[
0, π

4
)

with a restriction that any digitized rigid motion represented by a
point of parameters w ∈ Bε((t1, t2, θ)) remains bijective when restricted to a given
finite set S. More formally, we look for the maximum ε such that for any w ∈ {w |
‖w − (t1, t2, θ)‖ ≤ ε} the corresponding digitized rigid motion is bijective restricted to
S.

Instead of solving this problem that requires to consider the three parameters simul-
taneously, in this section, we consider a simpler, yet practically relevant, problem by
separately considering the translation and rotation parts. First, we fix the translation
given by t, and find which nearby angles of rotation preserve bijectivity, by using the
notion of hinge angles [1, 15, 25, 32]. More precisely, we compute the largest open inter-
val of angles which contains the initial angle θ, such that for any angle θ′ in this interval,
the digitized rigid motions given by θ′ and t remain injective on S. In particular, we
show how such an interval can be computed from an extended version of the forward
algorithm presented in Section 4.2. We also compute, in such an interval, angles that
correspond to a change in the neighborhood motion map i.e., the local behavior of U
(so that U changes but is still locally injective).

Second, one can also find, for a given angle θ, a range of translations t guaranteeing that
the corresponding rigid motions remain bijective. Such a strategy consists of measuring,
for each Gaussian integer p ∈ S, the distance between ρ(p) and non-injective frames f2

$,
1Our implementation of the forward and backward algorithms can be downloaded from http://doi.

org/10.5281/zenodo.248742

http://doi.org/10.5281/zenodo.248742
http://doi.org/10.5281/zenodo.248742

Chapter 4. Bijective Digitized Rigid Motions on Square Grid 44

and returning the lowest distance. This problem is rather simple; therefore, hereafter
we only consider the first problem, namely, we search for angles with a fixed translation.

4.3.1 Hinge Angles for Rigid Motions

In his PhD thesis [1], Fredriksson considered digitized rotations and the transition angles
which correspond to a shift in the image of a Gaussian integer p from one digitization
cell to another. These special angles were further studied—and named hinge angles—by
Nouvel and Rémila [25] and by Thibault et al. [15, 32]. In the sequel, we extend the
notion of hinge angles to the case of rigid motions with a given translation.

Definition 4.10. Given a translation t, an angle α = arg(α) is called a hinge angle if
there exists at least one Gaussian integer in Z[i] such that its image by a rigid motion—
rotation by α followed by the translation—has a half-integer part.

A hinge angle is represented by an integer quadruple (p1, p2, k, s) ∈ Z3 × {0, 1}, where
p1 = <(p) and p2 = =(p),p ∈ Z[i] and k + 1

2 stands for a half-grid line and s is a
binary flag which allows us to distinguish between different directions of a half-grid line,
namely, s = 0 stands for the vertical direction and s = 1 for the horizontal one. Let
p′ = U(p) and p′1 = <(p′), p′2 = =(p′); then, in accordance with Figure 4.5(b), we obtain

cosα = p1(p′1 − t1) + p2(p′2 − t2)
p2

1 + p2
2

(4.3)

and, in particular, when (p′1, p′2) = (λ, k + 1/2),

cosα =
p1λ+ p2

(
k − t2 + 1

2

)
p2

1 + p2
2

, (4.4)

where λ =
√
p2

1 + p2
2 −

(
k − t2 + 1

2

)2
. Similarly, sinα (resp. cosine/sine for (p′1, p′2) =

(k+1/2, λ)) can be obtained from the sum–difference identity of trigonometric functions.
Figure 4.5 illustrates some hinge angles of an integer point. Moreover, we consider a
function ζ such that for a quadruple (p1, p2, k, s) it returns the corresponding angle.

Lemma 4.11. Let α be a hinge angle, and θ be a Pythagorean angle. We can check
whether α > θ in constant time, by using only integer computations.

Proof. We give a proof similar to the one given by Thibault [15, Theorem 3.8]. Let
α = (p1, p2, k, s) be a hinge angle and θ be an angle associated with a Pythagorean
primitive triple (a, b, c), both in

[
0, π

2
]
. Also let t = t1

u1
+ t2

u2
i, t1, t2, u1, u2 ∈ Z be a

Chapter 4. Bijective Digitized Rigid Motions on Square Grid 45

<

=

p

p′

α

0
(a)

<

=

p

p′

p′ − t

t

α

0
(b)

Figure 4.5: Examples of rigid motions which induce transition of p = 7 + 5i
between digitization cells; (a) α represented by (7, 5, 7, 1), t = 0 and (b) α
represented by (7, 5, 9, 1), t = 7

5 + 13
10 i.

rational translation. Then we consider

cosα− cos θ =
p1λ+ p2

(
k − t2

u2
+ 1

2

)
p2

1 + p2
2

− a

c
.

We have that if θ > α then cosα− cos θ > 0. From that we have

cp2((2k + 1)u2 − 2t2)− 2au2
(
p2

1 + p2
2

)
> −2cλp1u2. (4.5)

From Inequality (4.5) we see that the right-hand side is always negative so if the left-
hand side is positive we can conclude immediately. When this is not the case i.e., both
sides of Inequality (4.5) are negative then we square on both sides and obtain

(
cp2((2k + 1)u2 − 2t2)− 2au2

(
p2

1 + p2
2

))2
< 4c2λ2p2

1u
2
2. (4.6)

We then notice that 4λ2 ∈ Z therefore verification of Inequality (4.6) can be done with
only integer calculations. Finally, to check if α > θ one has to check at most two
Inequalities (4.5–4.6).

Lemma 4.12. Let α and β be two hinge angles. We can check if α > β in constant
time by using only integer computations.

Proof. We give a proof similar to the one given by Thibault [15, Theorem 3.9]. Let
α = (p1, p2, k, s) and β = (q1, q2, r, s

′) be hinge angles both in
[
0, π

2
]
. Also let t =

Chapter 4. Bijective Digitized Rigid Motions on Square Grid 46

t1
u1

+ t2
u2
i, t1, t2, u1, u2 ∈ Z be a rational translation. Then we consider

cosα− cosβ =
p1λ+ p2

(
k − t2

u2
+ 1

2

)
p2

1 + p2
2

−
q1λ+ q2

(
r − t2

u2
+ 1

2

)
q2

1 + q2
2

. (4.7)

We have that if β > α then cosα − cosβ > 0. For simplicity, let A = (q2
1 +

q2
2)p2

(
2k − 2t2

u2
+ 1

)
, B = (p2

1 + p2
2)q2

(
2r − 2t2

u2
+ 1

)
, C = (p2

1 + p2
2)q1 and D = (q2

1 +
q2

2)p1. From that we can rewrite (4.7) by

u2 (A−B) > 2u2
(
Cλ′ −Dλ

)
. (4.8)

On the one hand, if the left-hand side of Inequality (4.8) is negative and the right-hand
side is positive then α > β. On the other hand, if the left-hand side is positive and the
right-hand side is negative we have α < β.

If both signs are the same then first we compute the square of each side. On one hand,
if both side are positive then by taking squares of Inequality (4.8) we obtain

u2
2 (A−B)2 − 4u2

2

(
D2λ2 + C2λ′2

)
> −8u2

2CDλλ
′. (4.9)

On the other hand, if both side are negative then taking squares of Inequality (4.8) gives

− 2u2
2AB < 4u2

2
(
Cλ′ −Dλ

)2 − u2
2(A2 +B2). (4.10)

If the sign of the left-hand (resp. right-hand) side of Inequality (4.9) (resp. (4.10))
is nonnegative, then β > α. Otherwise, i.e. if both sides are negative we square the
inequalities once again to obtain

(
u2

2 (A−B)2 − 4u2
2

(
D2λ2 + C2λ′2

))2
< 64u4

2C
2D2λ2λ′2 (4.11)

and
4u4

2A
2B2 > u4

2

(
4
(
Cλ′ −Dλ

)2 − (A2 +B2)
)2
, (4.12)

respectively. Then, Inequalities (4.11–4.12) can be verified with only integer computa-
tions.

Remark 4.13. Nouvel and Rémila proved that for t = 0, the intersection between hinge
and Pythagorean angles is empty [25]. This property is generally lost for t 6= 0.

Let Et(p) = {ζ(p1, p2, k, s) | k ∈ Z, s ∈ {0, 1}} be the ordered set of hinge angles for
a given p = p1 + p2i ∈ Z[i], which is different from the origin. Then, using results of
Lemmas 4.11 and 4.12, given a Pythagorean (or hinge) angle θ, we define a function
h<

t (p, θ) (resp. h>
t (p, θ)) which returns, for given p ∈ Z[i] and rational translation t,

Chapter 4. Bijective Digitized Rigid Motions on Square Grid 47

<

=

p′

p
p̄

p̌
θh

>
t
(p, θ

)

h
<
t
(p, θ)

0

Figure 4.6: Visualization of different images of the point p = (7, 5) under rigid
motions given by fixed t = 0 and rotations by angles: θ = 3

100 and hinge
angles h<

t (p, θ) = −ζ(7, 5, 4, 1) – clockwise rotation of p, h>
t (p, θ) = ζ(7, 5, 5, 1),

represented by points p′, p̌ and p̄, respectively.

the closest lower (resp. upper) hinge angle to θ in Et(p), namely h<
t (p, θ) < θ (resp.

θ < h>
t (p, θ)). In other words, @α ∈ Et(p) such that h<

t (p, θ) < α < θ (resp. θ <

α < h>
t (p, θ)). Note that h<

t (p, θ) (resp. h>
t (p, θ)) can be determined in constant time2

by considering half-grid lines which bound the closest digitization cell i.e., C1(U(p)).
Figure 4.6 shows examples of h<

t (p, θ) (resp. h>
t (p, θ)) for some p ∈ Z[i] and (t1, t2, θ).

4.3.2 An Algorithm for Finding the Local Bijectivity Angle Interval

Let us define an ordered set Cp ⊂ Et(p) such that for any hinge angle α ∈ (inf(Cp),
sup(Cp)), where sup(Cp) and inf(Cp) stand for supremum and infimum of Cp, the
corresponding digitized rigid motion is bijective when restricted to N1(p), and ∃j ∈ N+

such that ((αj < θ < αj+1) ∧ (αj , αj+1 ∈ Cp)).

We shall now build iteratively, for a given Pythagorean angle θ and a fixed rational trans-

lation t, an ordered set of hinge angles C =
(⋃

p∈S
Et(p)

)⋂(⋂
p∈S

[inf(Cp), sup(Cp)]
)

,

such that (inf(C), sup(C)) is the largest open angle interval containing θ, guaranteeing
that the digitized rigid motions represented by such angles and the translation vector
t are bijective while restricted to S. Let γ<

t = inf(C) (resp. γ>
t = sup(C)); then we

2In [32], Thibault et al. proposed an algorithm for computing hinge angles h<
t (p, θ) and h>

t (p, θ)—for
t = 0—in a logarithmic time, which can be improved to constant time while considering half-grid
lines which bound the closest digitization cell, i.e., C1(U(p)). Notice that the algorithm also needs a
modification in the while loop condition, such that kmax − kmin ≤ 1, to avoid an infinite loop for some
points, e.g., p = 1.

Chapter 4. Bijective Digitized Rigid Motions on Square Grid 48

initialize the angle γ<
t (resp. γ>

t) with −2π (resp. 2π). To verify if the digitized rigid
motion corresponding to a hinge angle α is non-injective, let cl(f2

$) stands for the clo-
sure of a non-injective zone f2

$ and let ρα(p) stands for the remainder map such that
the initial angle θ has been substituted with the angle α. Then, as α is a hinge angle,
ρα(p) is on the border of the remainder range.

To efficiently build the ordered set C, let ρα(p) stands for the remainder map, where
the initial angle θ has been substituted with an angle α. Then, the strategy consists of
iterative verifying if any point p ∈ S belongs to a non-injective mapping under U . If so,
we return an empty ordered set C (this is just for the sake of completeness, since we want
to apply the extended algorithm to the case when U maps S injectively). Otherwise,
the function h<

t (p, θ) (resp. h>
t (p, θ)) is applied to update γ<

t (resp. γ>
t) by finding a

hinge angle α ∈ [γ<
t , γ

>
t] such that non-injectivity occurs for p ∈ S. Note that at least

one coordinate of ρα(p) is on the border of the remainder range. Moreover, intermediate
hinge angles which do not induce non-injectivity are stored in C: these angles induce
different images of S under digitized rigid motions. A pseudo-code of the extended
forward algorithm is represented by Algorithm 2.

Figure 4.7 presents different images of some finite set S under digitized rigid motions
represented by parameters obtained from the extended forward algorithm. Note that for
the example represented by Figure 4.2 i.e., the finite set S (see Figure 4.2(a)) and initial
parameters

(
1
4 , 0, arccos 35

37

)
, where θ = arccos 35

37 is given by the Pythagorean triple
(35, 12, 27), the extended forward algorithm gives C = {(3, 5, 1, 0), (7, 7, 4, 0)}. This
process is summarized in the extended forward algorithm, below. The time complexity
of this algorithm is given by the number of hinge angles for the furthest Gaussian integer
from the origin p = p1 + p2i ∈ S which, for a given t, is lower than n =

⌊√
p2

1 + p2
2 + 1

2

⌋
[15, Chapter 3] and the cardinality of a finite set S, leading to O(n|S|), which is rewritten
by O(

√
|S||S|) if we assume that S forms a square.

Chapter 4. Bijective Digitized Rigid Motions on Square Grid 49

Algorithm 2: An algorithm to compute for a finite set S ⊂ Z[i] a bijectively stable
ordered set of hinge angles with respect to a given translation t.
Data: A finite set S ⊂ Z[i]; a digitized rigid motion U defined by θ and t.
Result: An ordered set of hinge angles C = {γ<

t = α0, α1, . . . , αn−1, γ
>
t = αn}.

1 γ<
t ← −2π

2 γ>
t ← 2π

3 C ← {γ<
t , γ

>
t }

4 foreach p ∈ S do
5 if ForwardAlgorithm(N1(p) ∩ S, θ, t) 6= ∅ then
6 return ∅
7 foreach # ∈ {<,>} do
8 α← h#

t (p, θ)
9 while α ∈ (γ<

t , γ
>
t) do

10 if (p + d→ ∈ S and ρα(p) ∈ cl(f2
→)) or (p + d↓ ∈ S and ρα(p) ∈ cl(f2

↓))
then

11 γ#
t ← α

12 else
13 C ← C ∪ {α}
14 α← h#

t (p, α)

15 C ← C \ {α | α ∈ C,α /∈ (γ<, γ>)}
16 return C

(a) (b) (c)

Figure 4.7: (a) an initial finite set S ⊂ Z[i], colored in black and red. (b–c)
represent images of S under digitized rigid motions for parameters obtained
by the extended forward algorithm for the initial parameters (0, 0, arccos 35

37),
i.e. C = {ζ(6, 7, 3, 0), ζ(5, 7, 2, 0), ζ(8, 9, 4, 0)}. (b) The image of S for α ∈
(ζ(6, 7, 3, 0), ζ(5, 7, 2, 0)) and (c) the image of S for α ∈ (ζ(5, 7, 2, 0), ζ(8, 9, 4, 0)).
In (b–c) the Gaussian integer in the middle of the blue square has coordinates
3 + 5i and it is an image, under U , of the Gaussian integer 1 + 6i, which is
at the center of the red square in (a). Please, note that the parameters were
obtained with a very experimental implementation of the presented algorithm.
Therefore, they may not be complete or correct.

Chapter 5

Bijective Digitized Rotations on
Regular Hexagonal Grid

In this chapter, we study the bijectivity of digitized rotations defined on the hexagonal
grid and we consider an approach similar to the one proposed by Roussillon and Cœur-
jolly [24]. We prove that there exist two subsets of Eisenstein integers yielding bijective
digitized rotations. This differs from the square case, where only one subset is involved.
We also show that bijective digitized rotations on the hexagonal grid are more numerous
than their counterparts on the square grid for angles relatively close to multiple of π

3k,
k ∈ Z, angle. This chapter is based on the contribution [33].

5.1 Bijectivity of Digitized Rotations

Let us consider the rigid motions defined by Equation (2.1) such that t = 0. Since
Lemma 4.1 remains valid for digitized rigid motions defined on Z[ω], within this chapter
we consider only rotations by an angle θ = arg(θ) where θ is an Eisenstein integer given
by a primitive Eisenstein triple, i.e. θ ∈ Z[ω]ρ (see Chapter 2).

5.1.1 Set of Remainders

We start our study of bijectivity by comparing the rotated lattice U(Z[ω]) with Z[ω].
Then, the digitized rotation U = D ◦ U is bijective if and only if ∀λ ∈ Z[ω] ∃!κ ∈ Z[ω]
such that U(κ) ∈ C1(λ). This is equivalent to the “double” surjectivity relation used by

51

Chapter 5. Bijective Digitized Rotations on Regular Hexagonal Grid 52

Figure 5.1: A visualization of a mapping between Z[ω] and U(Z[ω]). Elements
of Z[ω] (resp. U(Z[ω])) are marked by the gray triangles (resp. the red circles)
and their digitization cells are depicted as black (resp. red dotted) line seg-
ments. The arrows which correspond to bijective and non-bijective mappings
are marked in blue and green (resp. brown), respectively. (see Formula (5.1)).

Roussillon and Cœurjolly [24]:

∀λ ∈ Z[ω], ∃κ ∈ Z[ω], U(κ) ∈ C1(λ)

∀κ ∈ Z[ω], ∃λ ∈ Z[ω], λ ∈ C θ
|θ|

(U(κ)).
(5.1)

Instead of studying the whole source and target spaces, we study the set of remainders
defined by the map ∣∣∣∣∣∣ Sθ : Z[ω]× Z[ω] → C

(κ,λ) 7→ κ·θ
|θ| − λ.

Then, (5.1) can be rewritten as

∀λ ∈ Z[ω], ∃κ ∈ Z[ω], Sθ(κ,λ) ∈ C1(0)

∀κ ∈ Z[ω], ∃λ ∈ Z[ω], Sθ(κ,λ) ∈ C θ
|θ|

(0) ,
(5.2)

provided that Sθ(Z[ω],Z[ω]) ∩ C1(0) = Sθ(Z[ω],Z[ω]) ∩ C θ
|θ|

(0). In other words

Sθ(Z[ω],Z[ω]) ∩ ((C1(0) ∪ C θ
|θ|

(0)) \ (C1(0) ∩ C θ
|θ|

(0))) = ∅.

Chapter 5. Bijective Digitized Rotations on Regular Hexagonal Grid 53

5.1.2 Factorization of Primitive Eisenstein Integers

Before going further let us state the following results related to factoring of primitive
Eisenstein integers and used in the later sections.

Lemma 5.1. Let θ be an Eisenstein integer such that θ is not the product of an integer
and an Eisenstein unit. Then θ = θ̄ · υ where υ ∈ Υ, if and only if |θ|2 ≡ 0 (mod 3).

Proof. Solving θ = θ̄ · υ where υ ∈ Υ, is equivalent to solving θ2 = |θ|2υ, whose
solutions (in C) are θ = ±|θ|

√
υ, where

√
υ means any root. Two possibilities occur:

(i) υ ∈ {1,ω, ω̄}, which are squares in Z[ω]; this is the first case in the Lemma 5.1; (ii)
υ ∈ {−1,−ω,−ω̄}, whose roots are not in Z[ω] but in Z[ω]/

√
3; in order for θ to be an

Eisenstein integer, its modulus |θ| must contains a
√

3 factor.

Lemma 5.2. For a given θ = a + bω ∈ Z[ω]+ρ , considering γ = (s + t) + tω ∈ Z[ω]
where s and t are generators of (a, b, c) (see Lemma 2.2), we then have

θ = γ · γ, (5.3)

|θ| = c = γ · γ̄, (5.4)

|γ|2 6≡ 0 (mod 3) , (5.5)

gcd(γ, γ̄) = 1, (5.6)

gcd(θ, c) = γ. (5.7)

Proof. Equations (5.3–5.4) are direct consequences of the parameterization given in
Lemma 2.2.

For Statement (5.5), let us suppose that there exists ν ∈ Z[ω] such that γ = µ · ν with
|µ|2 = 3 and µ ∈ Z[ω]. Since the squared modulus is multiplicative, |γ|2 = (|µ||ν|)2

and thus c = 3|ν|2, which means that 3 divides c. From [34, Theorem 1], we know that
3 does not divide c for a valid prime Eisenstein triple, which contradicts the hypothesis
that ν exists.

To prove (5.6), let us consider prime factors {πi}n of γ (resp. {π′i}n of γ̄). We have
γ = π1 ·π2 . . .πn (resp. γ̄ = π̄1 · π̄2 . . . π̄n). Such prime factors are uniquely defined up
to their associates. From (5.5) and Lemma 5.1, prime factor decomposition of γ and γ̄

have no common factor (beside units) and thus gcd(γ, γ̄) = 1.

Finally, the statement (5.7) follows from Equations (5.3–5.4) and (5.6).

Chapter 5. Bijective Digitized Rotations on Regular Hexagonal Grid 54

5.1.3 Reduced Set of Remainders

Working in the framework of Eisenstein rational rotations defined by θ ∈ Z[ω]ρ, allows
us to turn to Eisenstein integers as |θ|G ⊂ Z[ω]. For the reason that Eisenstein integers
are nicer to work with, we do scale G by |θ|. Similarly, to the former discussion, after
scaling G by |θ|, we consider the finite set of remainders obtained by comparing the
lattice |θ|U(Z[ω]) with the lattice |θ|Z[ω], and applying the scaled version of the map
Sθ defined as ∣∣∣∣∣∣ Šθ : Z[ω]× Z[ω] → Z[ω]

(κ,λ) 7→ κ · θ − |θ|λ .
(5.8)

Indeed, Formula (5.2) is rewritten by
∀λ ∈ Z[ω] ∃κ ∈ Z[ω], Šθ(κ,λ) ∈ C|θ|(0)

∀κ ∈ Z[ω] ∃λ ∈ Z[ω], Šθ(κ,λ) ∈ Cθ(0) .
(5.9)

Let us consider γ ∈ Z[ω] such that θ = γ2 ∈ Z[ω]+ρ and |θ| = γ · γ̄ (see Lemma 5.2). We
then see that the terms of Formulae (5.8) and (5.9) are multiples of γ. Since division by
γ removes the common multiple while ensuring results to stay in Z[ω], let us define∣∣∣∣∣∣ S

′
γ : Z[ω]× Z[ω] → Z[ω]

(κ,λ) 7→ κ · γ − γ̄ · λ.

Then, the bijectivity of U is ensured when
∀λ ∈ Z[ω], ∃κ ∈ Z[ω], S′γ(κ,λ) ∈ Cγ̄(0)

∀κ ∈ Z[ω], ∃λ ∈ Z[ω], S′γ(κ,λ) ∈ Cγ(0),
(5.10)

provided that S′γ(Z[ω],Z[ω]) ∩ Cγ̄(0) = S′γ(Z[ω],Z[ω]) ∩ Cγ(0) ⇔ S′γ(Z[ω],Z[ω]) ∩
((Cγ(0) ∪ Cγ̄(0)) \ (Cγ(0) ∩ Cγ̄(0))) = ∅.

5.2 Characterization of Bijective Digitized Rotations

In this section we provide sufficient and necessary conditions for bijectivity of U . Our
goal is to prove that the bijectivity of U is ensured if and only if θ is given by a
primitive Eisenstein triple such that its generators s, t are of the form s > 0, t = s + 1
or s = 1, t > 1.

Before going into the main discussion of this section, we note that the vertexes of Cγ(0)
and that of Cγ̄(0) lie on the same circle and their order does not depend on γ. It is due to

Chapter 5. Bijective Digitized Rotations on Regular Hexagonal Grid 55

the fact that |γ| = |γ̄| and arg(γ) = − arg(γ̄). Also, the vertexes of the hexagonal cells
Cγ(0) and Cγ̄(0) are not in Z[ω]. Indeed, as it can be noted in Figure 5.2, the vertexes of
C1(0) have modulus equal to 1

3 and are not in Z[ω]. Then, since |γ|2 (resp. |γ̄|2) is not
a multiple of 3 (see Lemmas 5.1 and 5.2), therefore, vertexes of Cγ(0) = γ ·C1(0) (resp.
Cγ̄(0) = γ̄ · C1(0)) are not in Z[ω]. For the simplification of the following discussion we
scale the cells Cγ(0) and Cγ̄(0) by 2+ω so that the vertexes are in Z[ω] (see Figure 5.2).

Lemma 5.3. If s 6= 1 or t 6= s + 1, then ∃φ ∈ S′γ(Z[ω],Z[ω]) such that φ ∈ (Cγ̄(0) ∪
Cγ(0)) \ (Cγ̄(0) ∩ Cγ(0)).

Proof. Thanks to the symmetry, we focus on one of the vertexes of Cγ̄·(2+ω)(0), γ̄. Then
we consider the two closest elements of Cγ̄·(2+ω)(0)∩Z[ω] to γ̄ which are ζ = γ̄ − 1 and
ζ′ = γ̄ + ω. Note that we need to consider only this case since we have 0 < s < t.

We now show that if t 6= s + 1 or s 6= 1 then ζ /∈ Cγ·(2+ω)(0) or ζ′ /∈ Cγ·(2+ω)(0).
Figure 5.3 illustrates examples of such a situation.

Let us consider the closest oriented edge of Cγ·(2+ω)(0) to γ̄, namely, ` = (−ω ·γ, ω̄ ·γ).

To verify if ζ and ζ′ lay on the left-hand side of `, we then need to verify the following
inequalities obtained from the respective line equations multiplied by −

√
3

2

s2 − st+ t < 0, (5.11)

s2 − st+ s+ t < 0, (5.12)

respectively. Then by substituting t with s+ e, Inequalities (5.11 – 5.12) are rewritten
by

e(s− 1) > s, (5.13)

e(s− 1) > 2s, (5.14)

respectively. We notice that Inequalities (5.13 – 5.14) are violated when s = 1 or when
s > 1 and e = 1.

We then show that either ζ
2+ω or ζ′

2+ω , is an element of S′γ(Z[ω],Z[ω]). First, we have
that

ζ

2 + ω
= −e+ 1

3 +
((1− 2e)

3 − s
)
ω (5.15)

and
ζ′

2 + ω
= −e− 1

3 +
(2(1− e)

3 − s
)
ω, (5.16)

where e = t−s. We notice that Formula (5.15) (resp. Formula (5.16)) has integer values
when e = 3n + 2 (resp. e = 3n + 1), n ∈ Z. We note that from Lemma 2.2, e 6≡ 0

Chapter 5. Bijective Digitized Rotations on Regular Hexagonal Grid 56

ω−ω̄
3

1−ω̄
3

1−ω
3

ω̄−ω
3

ω̄−1
3

ω−1
3

ω −ω̄

1

−ωω̄

−1 0

Figure 5.2: A unit cell C1(0) - the regular pointy topped hexagon marked by
the thick black line segments, and its set of vertexes V . The outer hexagon is
the result of the multiplication (2 + ω)C1(0), namely, C(2+ω)(0), where the red
arrows indicate the new position of the vertexes.

(mod 3), therefore either ζ
2+ω or ζ′

2+ω has integer values, namely either ζ
2+ω ∈ Z[ω] or

ζ′

2+ω ∈ Z[ω].

Finally, since gcd(γ, γ̄) = 1, there exist κ ∈ Z[ω] and λ ∈ Z[ω] such that either
S′γ(κ,λ) = ζ

2+ω or S′γ(κ,λ) = ζ′

2+ω .

Lemma 5.4. If s = 1, t > 1 or s > 0, t = s+ 1 we have that S′γ(Z[ω],Z[ω])∩ ((Cγ̄(0)∪
Cγ(0)) \ (Cγ̄(0) ∩ Cγ(0))) = ∅.

Proof. Thanks to the symmetry of Cγ·(2+ω)(0) and Cγ̄·(2+ω)(0), we focus on a pair of
consecutive vertexes of Cγ·(2+ω)(0), for example, γ and −ω ·γ, and those of Cγ̄·(2+ω)(0),
(i) γ̄ and −ω̄ · γ̄ if s > 0, t = s+ 1; (ii) ω · γ̄ and −ω̄ · γ̄ if s = 1, t > 0.

Then we consider the distances between the pair of parallel lines, which are defined by
(i) {γ, γ̄} and {−ω · γ,−ω̄ · γ̄}; (ii) {γ,−ω̄ · γ̄} and {−ω · γ,ω · γ̄} (see Figure 5.4(a)
and (b), respectively). These distances are (i) d = 1

2 −
1

6s+4 and (ii) d =
√

3
2 −

√
3

2t+2 , and
thus (i) d < 1

2 and (ii) d <
√

3
2 .

Since the parallel lines go through points of Z[ω] and are (i) parallel and (ii) orthogonal to
the hexagonal grid edges, the space between the parallel lines does not contain points of
Z[ω] – except on the boundary. This implies that ∀ζ ∈ Z[ω], ζ ∈ Cγ(0)⇔ ζ ∈ Cγ̄(0).

Chapter 5. Bijective Digitized Rotations on Regular Hexagonal Grid 57

(−ω) · γ

ω̄ · γ

γ̄ + ω

γ̄ − 1 γ̄

(a)
ω̄ · γ

(−ω) · γ

γ̄ + ω

γ̄ − 1 γ̄

(b)

Figure 5.3: Visualization of Cγ·(2+ω)(0) and Cγ̄·(2+ω)(0) for: s = 3, t = 5 (a);
s = 4, t = 9 (b), depicted in black and green, respectively. The usual hexagonal
grid is depicted in gray, whereas its mapping by 2 + ω is depicted in gray and
represented by dashed line segments. Note that, the Eisenstein integers denoted
by labels are also marked by red and blue dots. Each such a label corresponds
to the closest dot.

(−ω) · γ

ω̄ · γ

−γ

ω · γ

(−ω̄) · γ

γ

γ̄

(−ω) · γ̄

ω̄ · γ̄

−γ̄

ω · γ̄

(−ω̄) · γ̄

(a)

(−ω) · γ

ω̄ · γ

−γ

ω · γ

(−ω̄) · γ
γ

γ̄
(−ω) · γ̄

ω̄ · γ̄

−γ̄
ω · γ̄

(−ω̄) · γ̄

(b)

Figure 5.4: Visualization of Cγ·(2+ω)(0) and Cγ̄·(2+ω)(0) for the case: s > 0, t =
s + 1 (a) and s = 1, t > 1 (b). The two parallel lines discussed in the proof
of Lemma 5.4 are illustrated by red and blue dashed lines. Note that, the
Eisenstein integers denoted by labels are also marked by red and blue dots.
Each such a label corresponds to the closest dot.

From Lemma 5.3 and Lemma 5.4, we obtain the main theorem.

Theorem 5.5. A digitized rotation associated with θ = γ2 ∈ Z[ω]ρ,γ = (s+ t) + tω, is
bijective if and only if the generators of θ are of the form s = 1, t > 0 or s > 0, t = s+1.

Chapter 5. Bijective Digitized Rotations on Regular Hexagonal Grid 58

5.3 Density of bijective digitized rotations

Even though rational rotations are dense in the hexagonal and the square grids (see
Lemma 2.8), bijective digitized rotations are not dense, as illustrated in Figure 5.5,
where some of the greatest bijective angles are presented on the unit circle. We also
state the following proposition related to the asymptotic convergences of angles, which
lead to bijective digitized rotations. Note that, the respective limits are multiples of π

2

and π
3 for the square and hexagonal lattices, respectively.

Proposition 5.6. The asymptotic speeds of angles, which lead to the bijective digitized
rotations are 1

p for the square lattice, and
√

3
t and

√
3

3t for the hexagonal lattice and the
generators s = 1, t > 0 and t = s+ 1, respectively.

Proof. We focus on arctan θ where θ is an angle which leads to a bijective digitized
rotation. Le us then start with the hexagonal lattice cases.

We have that θ = arctan
(√

3a
2b−a

)
, and by substituting a, b for the generators of positive

Eisenstein primitive triples (see Lemma 2.2) we obtain

θ = arctan
(√

3(s2 + 2st)
2(t2 + 2st)− s2 − 2st

)
. (5.17)

Then, by developing Equation 5.17 with s = 1, t > 0 we obtain

arctan
(√

3(2t+ 1)
2t2 + 2t− 1

)
∼ arctan

(√
3
t

)
.

On the other hand, in the case of t = s+ 1, θ → π
3 and tan θ →

√
3, and a substitution

of s for t − 1 in Equation 5.17 leads to a constant, indeed
√

3
(

3t2−4t+1
)

3t2−1 ∼
√

3. Let us
consider then θ = π

3 + ε, where ε stands for infinitesimally small value different than 0.
We then have that

tan ε = tan
(
θ − π

3

)
= tan θ −

√
3

1 +
√

3 tan θ
, (5.18)

and by substitution of tan θ in Equation (5.18) we arrive at

√
3(1− 2t)

1− 6t+ 6t2 ∼ −
√

3
3t .

Finally, let us focus on the square grid case. We have arctan
(

p2−q2

2pq

)
, and by setting

q = p− 1 we obtain
arctan

(2p− 1
2p2 − 2p

)
∼ arctan

(1
p

)
.

Chapter 5. Bijective Digitized Rotations on Regular Hexagonal Grid 59

0 °

45 °

90 °

135 °

180 °

225 °

270 °

315 °

(a)

0 °

30 °

45 °

60 °

90 °

120 °

135 °

150 °

180 °

210 °

225 °

240 °

270 °

300 °

330 °

315 °

(b)

Figure 5.5: Distribution of angles whose digitized rotations by them are bijec-
tive in (a) the square and (b) the hexagonal grids. In (b), angles obtain from
generators of the form s > 0 and t = s + 1 are colored in blue, while angles
generated by s = 1 and t > 0, are colored in green.

Note that, in the hexagonal grid case, angles of the family generated by s = 1, t > 0, are
asymptotically three times as frequent as the angles given by generators s > 0, t = s+1.
From the frequencies point of view we can see that angles for which bijective rotation
exist cover more frequently the unit circle than in the square grid case.

Some examples of bijective and non-bijective digitized rotations on the hexagonal grid
are presented in Figure 5.6.

Chapter 5. Bijective Digitized Rotations on Regular Hexagonal Grid 60

(a) (b)

(c) (d)

Figure 5.6: Visualization of a bicuspid curve together with Gaussian digitization
of its interior on the hexagonal grid (a) and its digitized rotations: non-bijective
digitized rotation by angle θ = π

9 (b); bijective digitized rotations given by
Eisenstein integers generated by s = 1, t = 2 i.e., θ = arctan 5

√
3

11 , and s =
1, t = 3 i.e., θ = arctan 7

√
3

11 (c–d), respectively. In (b) digitization cells which
correspond to non-injective cases are marked in red.

Part II

Digitized Rigid Motions of 3D
Discrete Spaces

Chapter 6

Introduction

Digitized rigid motions defined on Z3 are simple yet crucial operations in image pro-
cessing applications involving 3D data, e.g. image segmentation [39], image registration
[40] and motion tracking [2], to name some. One way of designing rigid motions on Z3

is to combine continuous rigid motions defined on R3 with a digitization operator that
maps the result back into Z3. However, digitized rigid motions, though close to their
continuous sibling, often no longer satisfies the same properties. In particular, due to
digitization, such transformations do not preserve distances, and bijectivity and point
connectivity are generally lost.

In this context, first, we study at a local scale the geometric and topological defects of
digital sets induced by digitized rigid motions. For such a local analysis, one wishes to
generate all possible images of a finite digital set under digitized rigid motions. Such
a problem amounts to computing an arrangement of hypersurfaces in a 6D parameter
space. However, the state-of-the-art techniques such as cylindrical algebraic decom-
position or critical point method [41] are respectively burdened by double exponential
[42] and exponential [43] complexity, with respect to the number of variables. There-
fore, their direct application to the problem of decomposition of the six dimensional
parameter space of 3D digitized rigid motions are practically inefficient. Indeed, high
dimensionality and existence of cases such as asymptotic critical values [44]—e.g., a plane
orthogonal to a coordinate axis is tangent to a hypersurface in a point at infinity—make
computations of such an arrangement difficult.

Next, we focus on characterizing the 3D digitized rotations that are bijective. “Simple”
3D digitized rotations, in particular those around one of the coordinate axes, possess
the same properties as 2D digitized rotations. Therefore, an obvious subset of 3D bijec-
tive digitized rotations consists of the 2D bijective digitized rotations embedded in Z3.

62

Chapter 6. Introduction 63

Nevertheless, the question of determining whether a non-simple 3D digitized rotation is
bijective has remained open.

To our knowledge, a few efforts were devoted to understand 3D digitized rigid motions.
To name some: Toffoli and Quick proposed 3D digitized rotations represented by a
sequence of shears [45], which were then studied by Chen and Kaufman [46]; Fredriksson
[1] considered digitized rotations, and the transition angles which correspond to a shift
in the image of an integer point from one digitization cell to another. These special
angles (called by some hinge angles) were further studied by Thibault et al. [15, 47].

Within Part II our contributions amounts to.

1. In the context of computing all possible images of a finite digital set under digitized
rigid motions, we first show that the 6D parameter space can be split into two 3D
spaces by uncoupling the parameters. Then, we propose an algorithm to compute
at least one sample point for each 3D connected component in an arrangement
of second degree polynomials. The proposed algorithm is capable of handling
degenerate cases such as asymptotic critical values. Our implementation together
with sets of different images of 6-, 18- and 26-neighborhoods under 3D digitized
rigid motions are provided. These contributions were published in [48].

2. We then focus on answering, which 3D digitized rotations are bijective. In our
attempt we consider an approach similar to that used in Chapter 5 of Part I,
and by Roussillon and Cœurjolly [24] to prove the conditions for bijectivity of 2D
digitized rotations on the regular hexagonal (resp. integer) lattice using arithmetic
properties of Eisenstein (resp. Gaussian) integers. In our work, we partially extend
these results to 3D digitized rotations employing Lipschitz quaternions. However,
due to the non-commutative nature of quaternions the former approach has not
succeeded yet to fully characterize the bijective digitized rotations. Nevertheless,
we propose an algorithm which answers whether a given digitized rotation—defined
by a Lipschitz quaternion—is bijective. Our implementation together with a list
of Lipschitz quaternions, which induce 3D non-trivial bijective digitized rotations
is provided. We published this work in [49].

This part of the manuscript is organized as follows. In Chapter 7 we provide basic
notations, notions related to 3D digital geometry and 3D digitized rigid motions. Then,
in Chapter 8 we discuss the issue of bijectivity of 3D digitized rotations and we provide
a characterization algorithm, i.e. an algorithm such that given a Lipschitz quaternion,
it provides an answer whether the respective digitized rotation is bijective. Finally, in
Chapter 9 we discuss the classification problem of a finite digital set under digitized rigid
motions.

Chapter 7

Basic Notions

The purpose of this chapter is to introduce notions and notations used within Part II of
the manuscript.

7.1 Rotations in Three Dimensions

Rigid motions on R3 are bijective isometric maps defined as∣∣∣∣∣∣ U : R3 → R3

x 7→ Rx + t
(7.1)

where t = (t1, t2, t3) ∈ R3 is a translation vector and R is a rotation matrix. Note that
the matrix R representing a 3D rotation by an angle θ around a rotation axis ω, can be
obtained from: Rodrigues’ rotation formula [50–52], a quaternion [51, 52] or by applying
the Cayley transform.

7.1.1 Spatial Rotations and Quaternions

Quaternions are four dimensional counterparts of complex numbers, i.e. these are the
elements of the set H = {w+ ai+ bj + ck | w, a, b, c ∈ R} where the elements i, j, k have
the following properties:

i2 = −1, j2 = −1, k2 = −1,

jk = −kj = i, ki = −ik = j, ij = −ji = k .

65

Chapter 7. Basic Notions 66

Similarly to the set of complex numbers, H possesses a division ring structure, albeit a
non-commutative one. More precisely, for p,q, r ∈ H:

• the conjugate of q = w + ai+ bj + ck is defined as q̄ = w − ai− bj − ck;

• the product of two quaternions, defined as

q · p =(w1 + a1i+ b1j + c1k)(w2 + a2i+ b2j + c2k)

=w1w2 − a1a2 − b1b2 − c1c2 + (w1a2 + a1w2 + b1c2 − c1b2)i

+(w1b2 − a1c2 + b1w2 + c1a2)j + (w1c2 + a1b2 − b1a2 + c1w2)k,

is not commutative, i.e. q · p 6= p · q, in general, although real numbers, i.e.
quaternions such that q = q̄ do commute with all others;

• the modulus of q is defined as |q| =
√

q · q̄ =
√

q̄ · q =
√
w2 + a2 + b2 + c2;

• any nonzero quaternion q possesses a right and left inverse, given by q−1 = q̄
|q|2 ,

so that q · q−1 = q−1 · q = 1.

Any point in R3 is represented by a pure imaginary quaternion: x = (x1, x2, x3) '
x1i + x2j + x3k. Then, any rotation U can be written as x 7→ q · x · q−1 [51, 52]. The
quaternion q is uniquely determined up to multiplication by a nonzero real number, and
if |q| = 1, up to a sign change: q ·x ·q−1 = (−q) ·x · (−q)−1; hence the correspondence
between unit quaternions and rotation matrices is two-to-one. Note that, for any unit
quaternion q = w + ai+ bj + ck, a rotation angle θ and an axis of rotation ωωω are given
as θ = 2 arccos(a) = 2 arcsin(

√
a2 + b2 + c2), and ωωω = (a,b,c)√

a2+b2+c2 , respectively. We refer
readers unfamiliar with quaternions to [51–53].

7.1.2 Spatial Rotations and Cayley Transform

Let A be the skew-symmetric matrix

A =


0 c −b
−c 0 a

b −a 0



Chapter 7. Basic Notions 67

where a, b, c ∈ R and I be the 3× 3 identity matrix. Then almost any rotation can be
represented by a matrix R obtained from the Cayley transform [54]:

R = (I−A)(I + A)−1

= 1
1 + a2 + b2 + c2


1 + a2 − b2 − c2 2(ab− c) 2(b+ ac)

2(ab+ c) 1− a2 + b2 − c2 2(bc− a)
2(ac− b) 2(a+ bc) 1− a2 − b2 + c2

 . (7.2)

Indeed, rotations by angle π around any axis can only be obtained by the Cayley trans-
form as a limit: angles of rotation converge to π when a, b, c tend to infinity [55]. In prac-
tice, this constraint is negligible and does not affect generality of our study. Using this
formula, a rigid motion can be parametrized by the six real parameters (a, b, c, t1, t2, t3).
The rotation matrix obtained from Cayley transform corresponds to a rotation by a
quaternion q = 1 + ai + bj + ck. Note that, the matrix obtain from Cayley transform
(see Equation 7.2) has only rational terms.

7.2 Digitized Rigid Motions in Three Dimensions

In general, we have that U(Z3) * Z3. As a consequence, to define digitized rotations as
maps from Z3 to Z3, we usually consider Z3 as a subset of R3, then we apply U , and
finally we combine the real results with a digitization operator.

To define such a digitization operator let us first define a digitization cell centered at
x = (x1, x2, x3) ∈ Z3

C(x) =
[
x1 −

1
2 , x1 + 1

2

)
×
[
x2 −

1
2 , x2 + 1

2

)
×
[
x3 −

1
2 , x3 + 1

2

)
. (7.3)

The digitization operator is then defined as a function D : R3 → Z3, such that ∀x ∈
R3, ∃!D(x) ∈ Z3 and x ∈ C(D(x)). Figure 7.1 illustrates a digitization cell centered at
the origin, and Figure 7.2 shows the Gauss digitization [6] of a ball Br(0) of radius r = 3

2

centered at the origin. We can write that D(Br(0)) = Br(0) ∩ Z3.

Then, digitized rigid motions are defined as

U = D ◦ U|Z3 . (7.4)

Due to the behavior of D that maps R3 onto Z3, digitized rigid motions are, most of
the time, non-bijective. In other words, on the one hand, any y ∈ R3 is associated
to a unique preimage x ∈ R3, such that U(x) = y. On the other hand, r ∈ Z3 can
be associated to several (resp. no) preimages p ∈ Z3 for a digitized rigid motion U

Chapter 7. Basic Notions 68

0

Figure 7.1: A visualization of the digitization cell C(0). The dashed lines and
the white balls at the corners represent elements which do not belong to a
digitization cell.

associated to U|Z3 . In such case, U is non-injective (resp. non-surjective). For a 2D
visualization of the problem we encourage readers to look at Figure 2.6 in Part I.

7.2.1 Transformation Models

In order to explain the motivation for Chapter 9, here, we briefly discuss two transfor-
mation models used in applications of digitized rigid motions to image processing. In
this regard, digitization cells are considered to carry an additional value e.g., a color in-
formation. Such 3D digitization cells are often called voxels. The information attached
to voxels are then transfered between the initial and target spaces by computing, under
a digitized rigid motion, preimages of the respective points.

The first model called Lagrangian (presented in Figure 7.3(a)), consists of computing
U(x) for each point x of the initial space Z3. Then the value associated with x is

(a) (b)

Figure 7.2: A digitization of a ball Br(0) of the radius r = 3
2 centered at the ori-

gin. A continuous image of the ball intersected with Z3 (a). A digital analogue
of the ball Br(0), represented by a union of digitization cells (green cubes) (b).
Each small, blue sphere corresponds to an integer point in a digitization cell.

Chapter 7. Basic Notions 69

assigned to U(x). The Lagrangian model suffers from (i) undefined values when no
point is mapped onto y in the transformed space Z3 – when U is non-surjective, and (ii)
conflicting values when more than one point is mapped onto the same C(y), i.e. when
U is non-injective.

The second model, called Eulerian (presented in Figure 7.3(b)), consists of computing
D ◦ U−1(y) for each point y of the transformed space Z3. Note that Eulerian model
does solve the problem of non-surjectivity but not that of non-injectivity. Indeed, we
can still have a point in the initial space Z3 such that two points in the target space
have it as their preimage.

7.3 Point Status After Digitized Rigid Motions

In this section we study the number of possible preimages of y ∈ Z3 under a digitized
rigid motion U . The discussion provided in this section was mainly developed by the
author during his master studies. Let us start by stating the following definition of a
point status.

Definition 7.1. Let y ∈ Z3 be an integer point. The set of preimages of y with respect
to U is defined as MU (y) = {x ∈ Z3 | U(x) = y}, and y is referred to as an s-point,
where s is the status number of y, defined by s = |MU (y)|.

In this section, for any x ∈ Z3 and a digitized rigid motions U , we show that |MU (y)| ∈
{0, 1, 2, 3, 4}. Similar results for 2D are discussed in Chapter 2.

0-point. This situation occurs when a rigid motion does not map any integer point
into a digitization cell. Figure 7.4 presents possible situations which create a 0-point. It
should be noted from the case presented in Figure 7.4(a) that 0-points possibly can create

U

(a)

U−1

(b)

Figure 7.3: Two models of transformations: Lagrangian (a), and Eulerian (b).
Red dots represents points of S ⊂ Z3, while green ones correspond to points of
R3.

Chapter 7. Basic Notions 70

(a) (b)

Figure 7.4: A visualization of some 0-point cases. A cross-section of the 3D
space illustrating U(Z3) – a rotation by θ = π

12 around ω = (0, 0, 1), superposed
with the digitization cells of the target space (a). A part of a non-trivial digital
line segment composed of 0-points obtained for U(Z3) with ω =

(
0, 1√

2 ,
1√
2

)
and θ = 14

25 (b). The gray spheres (resp. white circles) represent points of U(Z3)
while the green digitization cells correspond to 0-points.

an infinite straight line, for example, with ω = (0, 0, 1) and θ = π
12 . Also, according to

Figure 7.4 a distance between two 0-points can be 1. This stands in contrast to 0-points
in 2D for which distance is at least

√
2 [11].

1-point. Some digitized rigid motions are bijective and even preserve distances as their
continuous siblings. For example, the translation by t =

(
2
5 ,−

2
5 , 0
)
, or rotation around

ω = (0, 0, 1) by an angle equal to a multiple of π
2 can be considered. It may also happen

for more complex motions as showed in Chapter 8.

2-point. The existence of 2-points is a consequence of the following results.

Lemma 7.2. Let p,q ∈ Z3 such that |p − q| ≥
√

3. Then for any rigid motion U we
have @y ∈ Z3 such that U(p) ∈ C(y) and U(q) ∈ C(y).

Lemma 7.2 can be verified by applying the definition of the digitization cells (see Equa-
tion (7.3)).

In accordance with Lemma 7.2, there are only two types of distances between two integer
points p and q leading to 2-points under a digitized rigid motion, namely |p − q| ∈
{1,
√

2}.

3-point. To find an answer to the question if three points p,q, r ∈ Z3 can enter the
same digitization cell, one can try to extend the configurations which create 2-points. In
other words, any configuration which leads to a 3-point should include an instance of a

Chapter 7. Basic Notions 71

c a

b

(a)

b

(b)

a
b

(c)

Figure 7.5: Three distinct configurations of three points (up to symmetries)
obtained as extensions of the 2-point configurations. Note that, the triangles’
vertexes have integer coordinates.

configuration which leads to a 2-point. All the configurations obtained by this approach
are shown in Figure 7.5. In the case presented in Figure 7.5(a), one can use Lemma 7.2
to see that this configuration cannot create a 3-point, since the length of side c =

√
3.

Lemma 7.3. For p,q, r ∈ Z3 whose product of all the Euclidean distances is more than
2
√

2 we have that @x ∈ Z3 such that U(p),U(q),U(r) ∈ C(x).

Proof. Let us consider three points x = (x1, x2, x3),y = (y1, y2, y3), z = (z1, z2, z3) ∈ R3

located in the digitization cell C(0). In order to find the mean distance between these
points we use the following inequality relation between the geometric and the arithmetic
means

3
√
|x− y|2|x− z|2|y− z|2 ≤ |x− y|2 + |x− z|2 + |y− z|2

3
and we maximize the sum |x − y|2 + |x − z|2 + |y − z|2, under the constraints −1

2 ≤
xi, yi, zi ≤ 1

2 , for i = 1, 2, 3.

Without loss of generality we focus on a convex function L(x1, y1, z1) = (x1 − y1)2 +
(y1 − z1)2 + (x1 − z1)2. From the convexity of L, we see that L(x1, y1, z1) = 0 is the
unique minimum which is reached when x1 = y1 = z1.

By the convexity and symmetry of L, its level set must be centered along the line
x1 = y1 = z1, which under the above constraints is equal to the diagonal of C(0).
Therefore, the value of L depends on the distance from the line x1 = y1 = z1. As the
digitizetion cell is convex, the maximum of L have to be achieved on the boundary of
the digitization cell.

Consequently, under the constraints L reaches the maximum when x1 = −1
2 , y1 =

−1
2 , z1 = 1

2 or x1 = −1
2 , y1 = 1

2 , z1 = −1
2 or x1 = −1

2 , y1 = 1
2 , z1 = 1

2 or
x1 = 1

2 , y1 = −1
2 , z1 = −1

2 or x1 = 1
2 , y1 = −1

2 , z1 = 1
2 or x1 = 1

2 , y1 = 1
2 , z1 = −1

2 .
Then we note that the maximum of L is equal to 2, which concludes that the maximum
of |x− y|2 + |x− z|2 + |y− z|2 is equal to 6.

Chapter 7. Basic Notions 72

Finally, the geometric mean must be ≤ 2, and then the product of distances ≤ 2
√

2. In
other words, if a triple of points whose product of Euclidean distances is > 2

√
2, then

at least one of them must lie outside the digitization cell C(0).

The proof idea was given by André Nicolas [56].

Lemma 7.4. For any triple of points x,y, z ∈ R3 whose product of all the Euclidean
distances is equal to 2

√
2, there exists a digitization cell on whose boundary lie x,y, z.

Proof. From the proof for Lemma 7.3 we have that the sum |x−y|2 + |x− z|2 + |y− z|2

has its maxima on the boundary of a digitization cell.

The configuration presented in Figure 7.5(b) can not then lead to a 3-point since the
product of its sides is equal to 2

√
2.

Proposition 7.5. A triple of points p,q, r ∈ Z3 that form a right triangle of sides
1, 1,
√

2, can lead to a 3-point under a digitized rigid motion.

From Proposition 7.5 we have that the configuration presented by Figure 7.5(c) can
create a 3-point.

4-point. Investigation of the existence of 4-point can be initiated in a similar way. In
other words, if a 4-point exists, it should be possible to obtain it from the configuration
which leads to a 3-point. Indeed, one can start from a configuration which causes a 3-
point and add a fourth point to it. Figure 7.6 presents all the possible configurations of
four integer points obtained in this way. From Lemmas 7.2–7.4, configurations presented
in Figures 7.6(a)–7.6(c) can be eliminated. Then we state the following.

Property 7.6. A 4-point is created only from a four-point configuration which is forming
a unit square.

Proof. Let us consider the triangle 4pqr of sides p = (0, 1, 0); q = (0, 0, 0); r = (1, 0, 0).
According to Lemmas 7.2 and 7.4, the only point which we can add to pqr is s = (1, 1, 0).
Consequently, the polygon pqrs is a unit square. Then, we know that the maximal
square inscribed on a unite cube has a side length equal to 3

4
√

2 > 1 [57].

Only the configuration presented in Figure 7.6(d) may create a 4-point. We finally
obtain the following theorem which gives the upper bound of possible point statuses.

Theorem 7.7. There is no s-point for which s > 4.

Chapter 7. Basic Notions 73

(a) (b) (c) (d)

Figure 7.6: All possible configurations (up to symmetries) created as extensions
of the configuration presented in Figure 7.5(c). The red dashed lines have the
length equal

√
3. The blue dashed lines represent configurations governed by

Lemma 7.4. Note that, the triangles’ vertexes have integer coordinates.

C(p) C(q)

(a)

C(p)

C(q)

(b)

C(p)

C(q)

(c)

Figure 7.7: A visualization of three different adjacency relations between 3D
integer points: face (a); edge (b) and vertex (c).

Proof. Starting from the possible four-point configuration, we try to add a new point
to create five-point configuration. Because the only possible four-point configuration is
spanned exactly on a unit cube face, any new point must belong to the opposite face or
must be collinear with two distinct points from the configuration. However, adding such
a point creates a pair of points between which a Euclidean distance is not lower than
√

3. Ipso facto, we show that we cannot obtain any new point configuration generated
from more than four points such that it can be placed in a digitization cell.

7.4 Connected Digital Sets and Neighborhood

Digitized rigid motions are not isometric transformations and may lead to splitting or
merging of digital connected components.

Definition 7.8. Let p,q ∈ Z3,p 6= q then we say that p and q are face-, edge- or
vertex-adjacent when the digitization cells C(p) and C(q) have a common face, an edge
or a vertex (see Figure 7.7).

Chapter 7. Basic Notions 74

Then using Definition 7.8 we define digital connected sets.

Definition 7.9. We call a digital set S ⊂ Z3 face-connected (resp. edge-, or vertex-
connected) if between any distinct points p,q ∈ S, there exists a sequence of points of S
such that any two consecutive points from the sequence are face-adjacent (resp. edge-,
or vertex-adjacent).

We also define a neighborhood of p ∈ Z3, which is an analogue definition to the one
introduced for p ∈ Z2 in Chapter 2.

Definition 7.10. The neighborhood of p ∈ Z3 (of squared radius r ∈ R+), denoted
Nr(p), is defined as

Nr(p) =
{
p + d ∈ Z3 | ‖d‖2 ≤ r

}
.

Chapter 8

Characterizing the Bijectivity of
3D Digitized Rotations

Digitized rigid rotations are neither surjective nor injective, in general. In this context,
it is useful to understand which 3D digitized rotations are indeed bijective. “Simple”
3D digitized rotations, in particular those around one of the coordinate axes, possess
the same properties as 2D digitized rotations. Therefore, an obvious subset of 3D bi-
jective digitized rotations consists of the 2D bijective digitized rotations embedded in
Z3. Nevertheless, the question of determining whether a non-simple 3D digitized ro-
tation is bijective has remained open. Indeed, Éric Andres in his habilitation wrote:
“une question qui demeure à ce jour ouverte est la question de l’existance d’autres AQA
(Applications Quasi Affines) non-triviales bijectives. Existe-t-il une AQA équivalente en
dimension 3 ? Nous avons quelques raisons de penser qu’il n’en existe pas en dimension
3 mais peut-être en dimension 4.” [21, pages 83–84]. This can be translated as: “an open
question is whether there exist other types of bijective quasi-affine transformations. Do
they exist in 3D? We have reasons to think that there are not such quasi-affine transfor-
mations in 3D but maybe in 4D.” In this chapter, we show that such non-trivial digitized
rigid motions—which belong to a subset of quasi-affine transformations—do exist.

Our, approach is similar to that used to prove the conditions for bijectivity of 2D dig-
itized rotations based on arithmetic properties of Gaussian (resp. Eisenstein) integers
(see Chapter 5). In the context of 3D digitized rotations, we partially extend the 2D
results to 3D by employing Lipschitz quaternions, which play a similar role to Gaussian
and Eisenstein integers. However, due to the non-commutative nature of quaternions
the former approach has not succeeded yet to fully characterize the bijective digitized
rotations. Nevertheless, we propose an algorithm which tells whether a given digitized
rotation, defined by a Lipschitz quaternion, is bijective. As a consequence, we cover

75

Chapter 8. Characterizing the Bijectivity of 3D Digitized Rotations 76

all the rational rotations i.e., those whose corresponding matrix representation contains
only rational elements – they do correspond to rotations given by Lipschitz quater-
nions. From the point of view of the applications, excluding a rotation whose matrix
has irrational elements is a minor issue, since computers are mainly carried out with
rational numbers. Moreover, using rational numbers ensures the exactness of the pro-
posed characterization algorithm. We conjecture, as in 2D (see Chapter 4 in Part I),
that non-rational rotations are not bijective.

8.1 Bijectivity Characterization

8.1.1 Set of Remainders

Let us compare the grid Z3 and the rotated grid U(Z3). The digitized rotation U = D◦U
is bijective if and only if each digitization cell C(x) of x ∈ Z3 contains one and only one
rotated point of q · Z3 · q−1; in other words, ∀y ∈ Z3, |MU (y)| = 1. Instead of studying
the whole source and target spaces, we study—as in Chapter 5—the set of remainders
defined by the map ∣∣∣∣∣∣ Sq : Z3 × Z3 → R3

(x,y) 7→ q · x · q−1 − y.

Then, the bijectivity of U can be expressed as

∀y ∈ Z3 ∃!x ∈ Z3, Sq(x,y) ∈ C(0),

which is equivalent to the “double” surjectivity relation, used by Roussillon and Cœur-
jolly [24]:  ∀y ∈ Z3 ∃x ∈ Z3, Sq(x,y) ∈ C(0)

∀x ∈ Z3 ∃y ∈ Z3, Sq(x,y) ∈ qC(0)q−1
(8.1)

provided that
Sq(Z3,Z3) ∩ C(0) = Sq(Z3,Z3) ∩ qC(0)q−1.

In other words,

Sq(Z3,Z3) ∩ ((C(0) ∪ qC(0)q−1) \ (C(0) ∩ qC(0)q−1)) = ∅.

Hereafter, we shall rely on Formula (8.1), and in the study of the bijectivity of digitized
rotation U , we focus on the images of Sq. More precisely, we study the group Gq spanned
by images of the map Sq:

Gq = Zq
(1

0
0

)
q−1 ⊕ Zq

(0
1
0

)
q−1 ⊕ Zq

(0
0
1

)
q−1 ⊕ Z

(1
0
0

)
⊕ Z

(0
1
0

)
⊕ Z

(0
0
1

)
.

Chapter 8. Characterizing the Bijectivity of 3D Digitized Rotations 77

8.1.2 Dense Subgroups and Non-injectivity

The key to understanding the conditions that ensure the bijectivity of U is the structure
of Gq. For this reason, we start by looking at the image Gq of Sq, and discuss its density.

Proposition 8.1. If one or more generators of Gq have an irrational term, then Gq∩Y
is dense for some nontrivial subspace Y . We say that Gq has a dense factor.

On the contrary, we have the following result.

Proposition 8.2. If all generators of Gq have only rational terms, then there exist
vectors σσσ,φφφ,ψψψ ∈ Gq which are the minimal generators of Gq.

Proof. The generators of Gq are given by the rational matrix B = [R | I3] where I3

stands for the 3 × 3 identity matrix and R is the corresponding rotation matrix. As
B is a rational, full row rank matrix, it can be brought to its Hermite normal form
H = [T | 03,3], where T is a non-singular, lower triangular non-negative matrix and 03,3

stands for 3 × 3 zero matrix, such that each row of T has a unique maximum entry,
which is located on the main diagonal1 [58]. Note that the problem of computing the
Hermite normal form H of the rational matrix B reduces to that of computing the
Hermite normal form of an integer matrix: let s stand for the least common multiple
of all the denominators of B which is given by s = |q|2; compute the Hermite normal
form H′ for the integer matrix sB; finally, the Hermite normal form H of B is obtained
by s−1H′. The columns of H are the minimal generators of Gq. Let us remind that the
rank of B is equal to 3. Therefore, H gives a base (σσσ,φφφ,ψψψ), so that Gq = Zσσσ+Zφφφ+Zψψψ.
As H′ gives an integer base, sGq is an integer lattice.

Lemma 8.3. Whenever Gq is dense, the corresponding 3D digitized rotation is not
bijective.

Lemma 8.3 can be proved in a similar way as Lemma 4.1 in Part I.

When Gq is dense (see Figure 8.1(a)), the reasoning of Nouvel and Rémila, originally
used to discard 2D digitized irrational rotations as being bijective [22], enables us to
show that a corresponding 3D digitized rotation cannot be bijective as well. What
differs from the 2D case is the possible existence of non-dense Gq with a dense factor in
the 3D case (see Figure 8.1(b)). In this context, we state the following conjecture.

Conjecture 8.4. Whenever Gq has a dense factor, the corresponding digitized rotation
is not bijective.

1Note that the definition of Hermite normal form varies in the literature.

Chapter 8. Characterizing the Bijectivity of 3D Digitized Rotations 78

(a) (b)

σσσ
φφφ

ψψψ

(c)

Figure 8.1: A mock-up illustration of a part of Gq that: is dense (a); has a dense
subgroup – the set of points at each plane is dense while the planes are spaced
by a rational distance (b); is a lattice (c). In the case of (a) and (b), only some
random points are presented, for the sake of visibility. In (c), vectors σσσ,φφφ,ψψψ are
marked in red, blue and green, respectively.

Henceforth, we will assume that Gq is generated by rational vectors, and forms there-
fore a lattice (see Figure 8.1(c)). In other words, corresponding rotations are consid-
ered as rational. The question now remains of comparing the (finitely many) points in
Sq(Z3,Z3) ∩ C(0) and Sq(Z3,Z3) ∩ qC(0)q−1.

8.1.3 Lipschitz Quaternions and Bijectivity

For representing 2D rational rotations, in Part I, we used Gaussian and Eisenstein
integers. In R3, rational rotations are characterized as follows [59].

Proposition 8.5. There is a two-to-one correspondence between the set of primitive
Lipschitz quaternions L = {a+ bi+ cj+ dk | a, b, c, d ∈ Z, gcd(a, b, c, d) = 1} and the set
of 3D rational rotations.

Chapter 8. Characterizing the Bijectivity of 3D Digitized Rotations 79

Working in the framework of rational rotations allows us to turn to integers, i.e. |q|2Gq

is an integer lattice. As integer lattices are easier to work with from the computational
point of view, we do scale Gq by |q|2 in order to develop a characterization algorithm.

Similarly to the former discussion after scaling Gq by |q|2, we consider the finite set
of remainders, obtained by comparing the lattice qZ3q̄ with the lattice |q|2Z3, and
applying the scaled version of the map Sq defined as∣∣∣∣∣∣ Šq : Z3 × Z3 → Z3

(x,y) 7→ q · x · q̄ − q · q̄ · y.
(8.2)

Indeed, Formula (8.1) is rewritten by∀y ∈ Z3 ∃x ∈ Z3, Šq(x,y) ∈ |q|2C(0)
∀x ∈ Z3 ∃y ∈ Z3, Šq(x,y) ∈ qC(0)q̄.

(8.3)

Note that the right-hand sides of Formulae (8.2) and (8.3) are left multiples of q. As a
consequence, we are allowed to divide them by q on the left side, while keeping integer-
valued functions. Let us define∣∣∣∣∣∣ S

′
q : Z3 × Z3 → Z4

(x,y) 7→ x · q̄ − q̄ · y.

Then, bijectivity of U is ensured when ∀y ∈ Z3 ∃x ∈ Z3, S′q(x,y) ∈ q̄C(0)
∀x ∈ Z3 ∃y ∈ Z3, S′q(x,y) ∈ C(0)q̄,

(8.4)

provided that
S′q(Z3,Z3) ∩ q̄C(0) = S′q(Z3,Z3) ∩ C(0)q̄.

8.2 An Algorithm for Bijectivity Characterization

In this section we present an algorithm which indicates whether a digitized rational
rotation given by a Lipschitz quaternion is bijective. The strategy consists of checking
if there exists w ∈ ((q̄C(0)∪C(0)q̄) \ (q̄C(0)∩C(0)q̄)) such that w = S′q(x,y). If this
is the case, then the rotation given by q is not bijective, and conversely.

Because q is a Lipschitz quaternion, the values of S′q span a sublattice Ǧq ⊂ Z4. There-
fore, given a Lipschitz quaternion q = a + bi + cj + dk, solving S′q(x,y) = w with

Chapter 8. Characterizing the Bijectivity of 3D Digitized Rotations 80

x,y ∈ Z3 for w ∈ Ǧq leads to solving the following linear Diophantine system

Az = w (8.5)

where zt = (x,y) ∈ Z6 and

A =



b c d −b −c −d

a −d c −a −d c

d a −b d −a −b

−c b a −c b −a


.

To find points of Ǧq that violate Formula (8.4), we consider points w ∈ Z4 ∩ q̄C(0)
(resp. w ∈ Z4 ∩ C(0)q̄) such that w /∈ C(0)q̄ (resp. w /∈ q̄C(0)). Then, we verify if w
belongs to Ǧq. The membership verification can be done in two steps. Step 1: we check
if q ·w ∈ Z3, i.e. we check if w lies in the starting hyperplane. This is always the case
when the following equation holds

aw1 − bw2 − cw3 − dw4 = 0,

where q = a+ bi+ cj+dk and w = (w1, w2, w3, w4), which is identified with a Lipschitz
quaternion w = w1 +w2i+w3j +w4k. This is equivalent to checking if the real part of
q ·w is equal to zero. Step 2: we check if Equation (8.5) has integer solutions. This can
be done by reducing the matrix A to its Smith normal form.

Proposition 8.6. The system Az = w has integer solutions if and only if the system
Sz′ = w′ has integer solutions, where S = UAV is the Smith normal form of A,
z′ = V−1z and w′ = Uw. Then, the system has integer solutions if and only if the
elements of w′ are integer multiples of the diagonal (or pseudo-diagonal for non-square
matrices) elements of S.

Proof. First we note that the systems Sz′ = w′ = UAVV−1z = Uw which is equivalent
to UAz = Uw

Then, we note that the matrices U and V correspond to unimodular rows and columns
operations, respectively. The key observation is that, since V corresponds to uni-
modular columns operations, therefore, the system has integer solutions if and only
if ∀i ∈ [1, n], (Uw)i

Si,i
∈ Z, where n is the row number of A.

Using the result of Proposition 8.6 we can verify if Equation (8.5) has integer solutions
by checking if w′i = kiSi,i where ki ∈ Z, i ∈ [1, 4], namely elements of w′ are integer

Chapter 8. Characterizing the Bijectivity of 3D Digitized Rotations 81

multiples of the diagonal elements of S. Note that Schrijver provided similar—but
computationally less efficient—conditions for full-rank matrices [58, page 51].

Notice that, before iterating over points w ∈ Z4 ∩ q̄C(0) (or w ∈ Z4 ∩ C(0)q̄), we can
first reduce a priori the matrix A to its Smith normal form S and then multiply w by
the unimodular matrix U.

All the steps are summarized in Algorithm 3. Figure 8.2 presents sets of points
q ·w ∈ qC(0)q̄ ∪ |q|2C(0) for some Lipschitz quaternions, which induce bijective digi-
tized rational rotations, while Figure 8.3 presents non-bijective cases. Finally, Table 8.1
lists up some examples of Lipschitz quaternions that generate non-simple 3D bijective
digitized rotations.

Algorithm 3: An algorithm which checks if a given Lipschitz quaternion is related to
a 3D bijective digitized rotation.
Data: a Lipschitz quaternion q = a+ bi+ cj + dk s.t. gcd(a, b, c, d) = 1.
Result: True if the digitized rotation given by q is bijective and false otherwise.

1 U,S,V← SmithDecomposition(A)
2 foreach w = (w1, w2, w3, w4) ∈ Z4 ∩ q̄C(0) do
3 if aw1 − bw2 − cw3 − dw4 = 0 and ∀i ∈ [1, 4], (Uw)i

Si,i
∈ Z then

4 if w /∈ C(0)q̄ then
5 return false

6 return true

The time complexity of Algorithm 3 is given as follows. Step 1: reduction of the matrix A
to the Smith normal form can be done while applying twice an algorithm for computing
Hermite normal form. This can be done in a polynomial time [58].

For instance, one can apply the algorithm proposed by Micciancio and Warinschi [60] or
its more recent, optimized version proposed and implemented in SageMath2 by Pernet
and Stein [61], whose running time complexity for full row rank matrices—with some
slight modifications it can handle non-full row rank matrices—is O(mn4 log2N(A)),
where n is the number of rows, m the number of columns and N(A) stands for a bound
on the entries of the matrix A [60]. Here n = 4 and m = 6. Thus, the time complexity
of Step 1 is O(log2N(A)).

Step 2: the number of points in Z4 ∩ q̄C(0) (resp. Z4 ∩ C(0)q̄) is bounded by |q|3. For
each point w, the time needed to check if ∀i ∈ [1, 4], (Uw)i

Si,i
∈ Z is constant. Therefore,

the time complexity of Step 2 is O(|q|3). Note that determining for each w if w /∈ C(0)q̄
(resp. w /∈ q̄C(0)) can be done in a constant time while checking a set of inequalities.

2http://www.sagemath.org

http://www.sagemath.org

Chapter 8. Characterizing the Bijectivity of 3D Digitized Rotations 82

Lipschitz quaternion Angle-axis representation
3 + 2i+ j θ ≈ 73.4◦,ω =

(
2√
5 ,

1√
5 , 0
)

5 + 4i+ j θ ≈ 79.02◦,ω =
(

4√
17 ,

1√
17 , 0

)
2 + i+ j + k θ ≈ 81.79◦,ω =

(
1√
3 ,

1√
3 ,

1√
3

)
4 + j + 3k θ ≈ 76.66◦,ω =

(
0, 1√

10 ,
3√
10

)
3 + i+ j + k θ ≈ 60◦,ω =

(
1√
3 ,

1√
3 ,

1√
3

)
4 + i+ j + k θ ≈ 46.83◦,ω =

(
1√
3 ,

1√
3 ,

1√
3

)
5 + i+ j + k θ ≈ 38.21◦,ω =

(
1√
3 ,

1√
3 ,

1√
3

)
3 + 2i+ 2j + 3k θ ≈ 107.9◦,ω =

(
2√
17 ,

2√
17 ,

3√
17

)
−5 + 3i+ 5j + 5k θ ≈ 246.1◦,ω =

(
3√
59 ,

5√
59 ,

5√
59

)
5− 4i+−5j + 5k θ ≈ 116.8◦,ω =

(
−2
√

2
33 ,−

5√
66 ,

5√
66

)
10− 10i+ 10j + 9k θ ≈ 118.4◦,ω =

(
− 10√

281 ,
10√
281 ,

9√
281

)
−10 + 9i− 9j − 10k θ ≈ 243.4◦,ω =

(
9√
262 ,−

9√
262 ,−5

√
2

131

)
2 + 2i+ j + 2k θ ≈ 112.6◦,ω =

(
2
3 ,

1
3 ,

2
3

)
−2− 2i− j + k θ ≈ 258.5◦,ω =

(
−
√

2
3 ,−

1√
6 ,

1√
6

)
Table 8.1: Examples of Lipschitz quaternions which generate 3D bijective digi-
tized rotations and their corresponding angel-axis representations.

(a) (b)

Figure 8.2: Visualization of q · w ∈ qC(0)q̄ ∪ |q|2C(0) together with qC(0)q̄
and |q|2C(0), for (a) q = 3 + k and (b) q = 3 + 4i+ k, each of which induces a
bijective digitized rotation. Points q ·w are depicted as blue spheres.

Finally, we can conclude that the time complexity of the algorithm is O(|q|3+log2N(A)).

Chapter 8. Characterizing the Bijectivity of 3D Digitized Rotations 83

8.3 Future work and conclusion

In this chapter, we showed the existence of non-simple 3D bijective digitized rotations –
ones for which a given rotation axis does not correspond to any of the coordinate axes.

Our approach is similar to that used to prove the conditions for bijectivity of 2D digitized
rotations based on arithmetic properties of Gaussian (resp. Eisenstein) integers (see
Chapter 5). In our work, we used arithmetic properties of Lipschitz quaternions, which
play a similar role to Gaussian (resp. Eisenstein) integers. Due to the non-commutative
nature of quaternions, the approach has not succeeded yet to fully characterize the set
of 3D bijective digitized rotations. Nevertheless, we proposed an algorithm that answers
whether a digitized rotation given by a Lipschitz quaternion q is bijective.

As a part of our future work, we would like to prove Conjecture 8.4 and find the general
solution to Equation (8.5), which would allow us to characterize the set of 3D bijective
digitized rotations. To share the problem of finding the general solution to characterizing
3D bijective digitized rotations, we provide a complete list of Lipschitz quaternions (up
to an integer factor) in the range [−10, 10] ⊕ [−10, 10]i ⊕ [−10, 10]j ⊕ [−10, 10]k, such
that the corresponding digitized rotations are bijective (https://doi.org/10.5281/

zenodo.814552) and non-bijective (https://doi.org/10.5281/zenodo.814607). The
lists were computed with our implementation of Algorithm 3, which can be downloaded
from https://doi.org/10.5281/zenodo.814569.

(a) (b)

Figure 8.3: Visualization of q ·w ∈ qC(0)q̄∩|q|2C(0) – depicted as blue points,
qw ∈ qC(0)q̄ \ |q|2C(0) – depicted as red points, and |q|2C(0) \ qC(0)q̄ –
depicted as green points, for (a) q = 4 + k and (b) q = 2 − 3i − 2j − 5k, each
of which induces a non-bijective digitized rational rotation.

https://doi.org/10.5281/zenodo.814552
https://doi.org/10.5281/zenodo.814552
https://doi.org/10.5281/zenodo.814607
https://doi.org/10.5281/zenodo.814569

Chapter 9

Computing 3D Neighborhood
Motion Maps

Rigid motions defined on Z3 are simple yet crucial operations in many image applica-
tions (e.g., image registration [40] and motion tracking [2]). However, it is also known
that such operations cause geometric and topological defects [27, 30, 62]. As such al-
terations happen locally, due to digitization, discrete motion maps have been studied
for neighborhoods of integer points, in order to understand such defects at local scale
[9, 11, 12].

For such a local analysis, one wishes to generate all possible images of a neighborhood
under digitized rigid motions. In digital geometry and combinatorics, complexity anal-
yses of such a problem have been made for several geometric transformations. The
complexities are related to the size of a given finite digital set. To our knowledge such
complexities are: O(n3) for 2D rotations [63]; O(n9) for 2D rigid motions [26] and O(n18)
for 2D affine transformations [64], where n stands for the diameter of a finite digital set.
Later, in this chapter we show that the theoretical complexity of such a problem for 3D
rigid motions is O(n24).

There are few algorithms available for generating all the transformed images from a
given digital set. Algorithms known to us are: 2D rotations [11]; 3D rotations around a
given rational axis [15, 47]; 2D rigid motions [9, 26] and 2D affine transformations [64].
However, none of them can be applied to 3D rigid motions.

In this chapter, we formulate this problem on a finite digital image as an arrangement
of 3D surfaces given by second degree polynomials, containing many degenerate cases.
We then solve the problem by computing all the 3D open cells in this arrangement. The
original problem involves a naive decomposition of the six dimensional parameter space

85

Chapter 9. Computing 3D Neighborhood Motion Maps 86

of 3D rigid motions, and can be formulated as an arrangement of hypersurfaces given
by polynomials of degree two with integer coefficients. Our goal is to compute for each
full-dimensional open cell at least one representative point, called a sample point. The
state-of-the-art techniques such as cylindrical algebraic decomposition or critical point
method [41] are respectively burdened by double exponential [42] and exponential [43]
complexity with respect to the number of variables. Therefore, their direct application
to the problem of decomposition of the six dimensional parameter space of 3D digitized
rigid motions are practically inefficient. Indeed, high dimensionality and existence of
degenerate cases such as asymptotic critical values [44]—e.g., a plane orthogonal to a
coordinate axis is tangent to a hypersurface in a point at infinity—make a computation
of such an arrangement difficult.

In this chapter, we discuss an ad hoc method introduced by us in [48]. The method
is as follows. We first show that the problem can be simplified by uncoupling the six
parameters of 3D rigid motions to obtain two systems in three variables. These two
systems correspond to the rotational and translational parameters of rigid motions.
Then we study an arrangement of second degree polynomials—called hereafter quadrics.
In order to detect all the topological changes along a non-generic direction in such an
arrangement of quadrics we use a sweeping a plane. We then compute all critical points,
including asymptotic critical values, of the arrangement. Moreover, we compute at least
one sample point for each open full dimensional cell in the arrangement – sample points
of full dimensional components provide information used to generate different images of
a digital set under digitized rigid motions. Our strategy is similar to the one proposed by
Mourrain et al. [65] where the main differences are: we do not use generic directions; we
handle asymptotic cases and give new criteria to compute critical values in polynomials
of degree two; we compute and store at least one sample point for each full dimensional
open cell where Mourrain et al. [65] compute full adjacency information for all cells
in an arrangement; moreover, we precompute all critical values a priori where in the
former approach only one type of critical values needs to be computed before the main
algorithm. Those sample points are then used to decompose the other three dimensional
parameter space.

9.1 Motivation: Connectivity Alterations

In this section we provide the motivations and the origins of the study provided in the
chapter. Our motivations have their origins in image processing where the Eulerian
transformation model (see Chapter 7) is commonly used. It is due to the fact that

Chapter 9. Computing 3D Neighborhood Motion Maps 87

digitized rigid motions in Eulerian model are surjective. Indeed, to explain the main
problem we assume—just in this section—that the Eulerian model is used.

Digitized rigid motions may change adjacency relations between points of a digital set
S ⊂ Z3. As a consequence, an application of a digitized rigid motion to a set of digital
connected sets may lead to splitting or merging of these digital connected sets. In this
regard, these topological problems have been studied for 2D digitized rigid motions by
Ngo et al. [27]. In particular, they have defined a notion of regularity on 2D digital sets
and proved sufficient conditions such that 2D digital edge-connected regular sets remain
edge-connected under any digitized rigid motion. For the definition of regularity given
by Ngo et al. we refer readers to [27, Definition 12]. Note that, a few years earlier a
more general—but overlooked by the community—result was stated without a proof by
Bazin et al. for 2D and 3D rigid motions [39, 66].

In the case of the 2D digitized rigid motions it can be shown that if S is regular (see
[27, Definition 12]), then S satisfies Bazin’s conditions but not vice versa. Also, we
found that a straightforward extension of the Ngo’s regularity definition to 3D digital
face-connected sets is not sufficient to ensure that the connectivity property is always
preserved under 3D digitized rigid motions. Figure 9.1 illustrates an example of a 3D
digital face-connected set (N3(p)) which fulfill a straightforward extension of the Ngo’s
regularity definition but it does not preserve its connectivity under a digitized rigid
motion. The example presented in Figure 9.1 illustrates a case such that a 3D digital
face-connected set has been mapped by a digitized rigid motions onto two 3D digital
face-connected sets, or one 3D digital edge-connected set.

The goal of this chapter is to develop an algorithm to compute the parameters of digitized
rigid motions leading to all the distinct images of N3(p) under U . Then, as a part of our
future research we plan to use these parameters to further study the issue of connectivity
alterations under D ◦ U−1.

9.2 Neighborhood Alterations Under Digitized 3D Rigid
Motions

The digitized rigid motions U = D ◦U are piecewise constant, and thus non-continuous,
which is a consequence of the nature of the digitization operator D. In particular, the
image U(p) of a given point p ∈ Z3 may remains constant as the parameters of U vary,
and then suddenly jump from one point of Z3 to another. In other words, neighborhood
Nr(p) evolves non-continuously, under digitized rigid motions, in accordance with the
parameters of U that underlies U (see Figure 9.2). Hereafter, without loss of generality

Chapter 9. Computing 3D Neighborhood Motion Maps 88

(a) (b)

1 2 3 4

Figure 9.1: Visualization of a case such that the digital set N3(0) – which fulfill a
straightforward extension of Ngo’s regularity conditions and is face-connected,
does not preserve its connectivity under a 3D digitized rigid motion. In (a),
points of the target space under the digitized rigid motion D ◦ U−1 such that
ω = (1√

2 ,
1√
2 , 0), θ = 6

5 and t = (−1
5 ,

1
5 ,

1
5), are represented by gray and red

spheres. The transparent-green cubes represent the digitization cells of N3(0).
The gray spheres represent points which were not mapped under U onto the
digitization cells of N3(0), whereas the red ones represent the ones which were.
In (b) the green and blue cubes represent the digitization cells of points of the
target space which were mapped by U onto N3(0), i.e. the points represented
by the red spheres in (a). The blue digitization cell represents the case in which
the connectivity relation of N3(0) was not preserved under U . The figures from
1 to 4 represent the corresponding layers of the digital set in (b).

we assume that U(p) ∈ C(p), i.e. U(p) stays in the digitization cell of p, namely
U(p) = p. Note that, a translation by an integer vector would not change the geometry
of Nr(p). Under this assumption we have that t ∈

(
−1

2 ,
1
2

)3
. Moreover, thanks to

symmetry we consider only non-negative a, b, c. Indeed, the rotation matrix R obtained
from Cayley transform for a, b, c corresponds to the rotation given by a quaternion
q = 1 + ai+ bj + ck. Then let us consider rotations σ which are rotations by π

2k, k ∈ Z

Chapter 9. Computing 3D Neighborhood Motion Maps 89

z

y

x

U(d)U(p)

U(d)U(p)

(a)
z

y

xU(d)

U(p)
U(d)

U(p)

(b)

Figure 9.2: An example of discontinuity of U . In (a) and (b) the image U(p)
remains within the same unit cube—digitization cell—centered at p depicted
in blue; thus the image U(p) is at the same position for both cases while the
continuous motions U slightly differ with respect to the parameters. On the
contrary, the point d = p + (1, 0, 0), has distinct images U(d) in (a) and (b); in
(a), the digitization operator D sends U(d) onto the green integer point, while
in (b), it sends the point onto the red one.

around one of the main axes e.g., σ : (x, y, z) 7→ (−y, x, z). Then, applying σ to q we
obtain q′ = 1 − bi + aj + ck and σ−1 maps q′ onto q. We observe that, if a, b, c are
negative then we can always find a series of σ rotations which map a, b, c to nonnegative
values and back.

Studying the non–continuous evolution of a neighborhood Nr(p) is equivalent to study
the discontinuities of U(d) for every d ∈ Nr(p) \ {p}. This occurs when U(d) is on the
half-grid plane, namely a boundary of a digitization cell. This is formulated by

Rid + ti = ki −
1
2 (9.1)

where Ri is the i-th row of the rotation matrix for i ∈ {1, 2, 3}, ki ∈ H(Nr(p)) =
Z ∩ [−r′, r′], and r′ is the greatest radius of U(Nr(p)) for all U , so that r′ = r +

√
3.

Chapter 9. Computing 3D Neighborhood Motion Maps 90

9.3 Arrangement of Quadrics

9.3.1 The Problem as Arrangement of Hypersurfaces

For any neighborhood Nr(p), the parameter space

Ω =
{

(a, b, c, t1, t2, t3) ∈ R6 | 0 ≤ a, b, c,−1
2 < ti <

1
2 for i = 1, 2, 3

}
,

is partitioned by a set of hypersurfaces given by Equations (9.1) into a finite number
of connected subsets, namely, 6D open cells. In each cell, points induce different rigid
motions U|Nr(p) but identical digitized rigid motions U|Nr

= D ◦ U|Nr(p). For a given
neighborhood Nr(p) of radius r, hypersurfaces (9.1) in Ω are given by the possible
combinations of integer 4-tuples (d1, d2, d3, ki) for i = 1, 2, 3 where d = (d1, d2, d3) ∈
Nr(p) \ {p} and ki ∈ H(Nr(p)). Since |Nr(p)| − 1 is in O(r3) and |H(Nr(p))| is in
O(r), the number of considerable hypersurfaces is in O(r4), and thus in accordance with
[67, Theorem 21.1.4] the overall complexity of the arrangement is theoretically bounded
by O(r24).

Our goal is to compute for each 6D open cell in Ω at least one representative point, a
sample point. The direct application of the cylindrical algebraic decomposition or critical
points method to this problem is practically inefficient – due to the high dimensionality
and existence of degenerate cases that make computation of the arrangement difficult.
For these reasons, in the following discussion we develop an indirect but still exact
strategy.

9.3.2 Uncoupling the Parameters

The first idea of our strategy consists of uncoupling the parameters of the six dimensional
parameter space Ω. Namely, we show that by considering the differences between the
hypersurfaces given in Equation (9.1) for different d ∈ Nr(p) and k ∈ H(Nr(p))3, we
can reduce the problem to the study of an arrangement of surfaces in the (a, b, c)-space,
and then lift the solution to the six dimensional space.

Let us consider a rigid motion defined by R and t. The condition for having U(d) =
k = (k1, k2, k3) ∈ Z3 where d ∈ Nr(p) is

ki −
1
2 < Rid + ti < ki + 1

2

Chapter 9. Computing 3D Neighborhood Motion Maps 91

for i = 1, 2, 3. Equivalently,

ki −
1
2 −Rid < ti < ki + 1

2 −Rid. (9.2)

Let us call as a configuration a list of couples (d,k), which describe how the neighborhood
Nr(p) is transformed. This configuration can be described as a function∣∣∣∣∣∣ F : Nr(p) → H(Nr(p))3

d = (d1, d2, d3) 7→ k = (k1, k2, k3).

We want to ascertain whether a given configuration F arises from some digitized rigid
motion U , which corresponds to some parameters a, b, c, t1, t2, t3. Then the inequalities
(9.2) state precisely the necessary and sufficient conditions for the existence of the trans-
lation part t of such a rigid motion, assuming that a, b, c are already known. Let us now
remark that all these inequalities, i.e. all inequalities obtained for each configuration
(d,k), can be summed up in three inequalities indexed by i:

max
d∈Nr(p)

(
F (d)i −

1
2 −Rid

)
< min

d∈Nr(p)

(
F (d)i + 1

2 −Rid
)

(9.3)

which gives a range on t such that all configuration (d,k) are valid under some U –
assuming once again that (a, b, c) are known. Equivalently we consider the following list
of inequalities

∀d,d′ ∈ Nr(p), F (d′)i −
1
2 −Rid′ < F (d)i + 1

2 −Rid, (9.4)

where d and d′ correspond to the ones which maximize and minimize the left and right
sides of Inequality (9.3), respectively. The key observation is that we have eliminated the
variables t1, t2, t3 and have reduced to a subsystem of inequalities in a, b, c. Moreover,
due to the rational expression in the Cayley transform (7.2), we may use the following
integer-valued polynomials of degree 2:

qi[d, ki](a, b, c) = (1 + a2 + b2 + c2)(2ki − 1− 2Rid), (9.5)

for i = 1, 2, 3, namely

q1[d, k1](a, b, c) = −2(1 + a2 − b2 − c2)v1 − 4(ab− c)v2 − 4(b+ ac)v3 + 2k1 − 1,

q2[d, k2](a, b, c) = −4(ab+ c)v1 − 2(1− a2 + b2 − c2)v2 − 4(bc− a)v3 + 2k2 − 1,

q3[d, k3](a, b, c) = −4(ac− b)v1 − 4(a+ bc)v2 − 2(1− a2 − b2 + c2)v3 + 2k3 − 1.

Chapter 9. Computing 3D Neighborhood Motion Maps 92

(a) (b)

Figure 9.3: Examples of quadrics of rational coefficients.

Inequality (9.4) can be rewritten as the quadratic polynomial inequalities

∀d,d′ ∈ Nr(p), Qi[d,d′, F (d)i, F (d′)i](a, b, c) > 0,

where

Qi[d,d′, ki, k
′
i](a, b, c) = qi[d, ki](a, b, c) + 2(1 + a2 + b2 + c2)− qi[d′, k′i](a, b, c), (9.6)

for i = 1, 2, 3. The set of quadratic polynomials for our problem is then given by
Q = {Qi[d,d′, ki, k

′
i](a, b, c) | i = 1, 2, 3,d,d′ ∈ Nr(p), ki, k

′
i ∈ H(Nr(p))}. Figure 9.3

illustrates the zero sets of some quadratic polynomials in Q.

9.4 Computing Arrangement of Quadrics in 3D

In this section we discuss how to compute the arrangement of quadrics Q(a, b, c) =
0 for Q ∈ Q given by Equation (9.6). Our strategy is similar to one proposed by
Mourrain et al. [65]. The main differences are that we store only sample points of full
dimensional connected components and we precompute and sort all event points—points
which induce changes of topology in an arrangement of quadrics—a priori. Moreover,
we consider cases such as asymptotic critical values. In short, our method is as follows:
Step 1: detect and sort all the events in which the topology of an arrangement changes;
Step 2: sweep by a plane the set of quadrics along a chosen direction. The sweeping
plane stops between two event points and we intersect the quadrics related to them with
the sweeping plane. This reduces to the problem of 2D arrangement of conics in each of
such points. After this procedure, for each sample point we recover the translation part

//
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
//
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
// 1.) Adds the following items to the 3D context menu:
//
// * `Generate Default View'
//
// Finds good default camera settings, returned as options for use with
// the \includemedia command.
//
// * `Get Current View'
//
// Determines camera, cross section and part settings of the current view,
// returned as `VIEW' section that can be copied into a views file of
// additional views. The views file is inserted using the `3Dviews' option
// of \includemedia.
//
// * `Cross Section'
//
// Toggle switch to add or remove a cross section into or from the current
// view. The cross section can be moved in the x, y, z directions using x,
// y, z and X, Y, Z keys on the keyboard, be tilted against and spun
// around the upright Z axis using the Up/Down and Left/Right arrow keys
// and caled using the s and S keys.
//
// 2.) Enables manipulation of position and orientation of indiviual parts and
// groups of parts in the 3D scene. Parts which have been selected with the
// mouse can be scaled moved around and rotated like the cross section as
// described above. To spin the parts around their local up-axis, keep
// Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License, either version 1.3
// of this license or (at your option) any later version.
// The latest version of this license is in
// http://www.latex-project.org/lppl.txt
// and version 1.3 or later is part of all distributions of LaTeX
// version 2005/12/01 or later.
//
// This work has the LPPL maintenance status `maintained'.
//
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
//
//host.console.show();

//constructor for doubly linked list
function List(){
 this.first_node=null;
 this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
 var new_node=new Node(x);
 if(this.first_node==null){
 this.first_node=new_node;
 new_node.prev=null;
 }else{
 new_node.prev=this.last_node.prev;
 new_node.prev.next=new_node;
 }
 new_node.next=this.last_node;
 this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
 var node=it.get();
 if(node.next!=null && node.prev!=null){
 node.next.prev=node.prev;
 node.prev.next=node.next;
 node.prev=null;
 node.next=this.first_node;
 this.first_node.prev=node;
 this.first_node=node;
 }
};
List.prototype.begin=function(){
 var i=new Iterator();
 i.target=this.first_node;
 return(i);
};
List.prototype.end=function(){
 var i=new Iterator();
 i.target=this.last_node;
 return(i);
};
function Iterator(it){
 if(it!=undefined){
 this.target=it.target;
 }else {
 this.target=null;
 }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
 if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
 this.prev=null;
 this.next=null;
 this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
 this.m=0;
 this.q0=new Array(3);
 this.z=new Array(4);
 this.f=new Array(4);
 this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
 this.sqr_r=new Array(4);
 this.current_c=this.c[0];
 this.current_sqr_r=0;
 this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
 var e=-this.current_sqr_r;
 for(var k=0;k<3;++k){
 e+=sqr(p[k]-this.current_c[k]);
 }
 return(e);
};
Basis.prototype.reset=function(){
 this.m=0;
 for(var j=0;j<3;++j){
 this.c[0][j]=0;
 }
 this.current_c=this.c[0];
 this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
 var i, j;
 var eps=1e-32;
 if(this.m==0){
 for(i=0;i<3;++i){
 this.q0[i]=p[i];
 }
 for(i=0;i<3;++i){
 this.c[0][i]=this.q0[i];
 }
 this.sqr_r[0]=0;
 }else {
 for(i=0;i<3;++i){
 this.v[this.m][i]=p[i]-this.q0[i];
 }
 for(i=1;i<this.m;++i){
 this.a[this.m][i]=0;
 for(j=0;j<3;++j){
 this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
 }
 this.a[this.m][i]*=(2/this.z[i]);
 }
 for(i=1;i<this.m;++i){
 for(j=0;j<3;++j){
 this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
 }
 }
 this.z[this.m]=0;
 for(j=0;j<3;++j){
 this.z[this.m]+=sqr(this.v[this.m][j]);
 }
 this.z[this.m]*=2;
 if(this.z[this.m]<eps*this.current_sqr_r) return(false);
 var e=-this.sqr_r[this.m-1];
 for(i=0;i<3;++i){
 e+=sqr(p[i]-this.c[this.m-1][i]);
 }
 this.f[this.m]=e/this.z[this.m];
 for(i=0;i<3;++i){
 this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
 }
 this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
 }
 this.current_c=this.c[this.m];
 this.current_sqr_r=this.sqr_r[this.m];
 ++this.m;
 return(true);
};
function Miniball(){
 this.L=new List();
 this.B=new Basis();
 this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
 var i=new Iterator(it);
 this.support_end.set(this.L.begin());
 if((this.B.size())==4) return;
 for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
 var j=new Iterator(k);
 k.incr();
 if(this.B.excess(j.deref()) > 0){
 if(this.B.push(j.deref())){
 this.mtf_mb(j);
 this.B.pop();
 if(this.support_end.get()==j.get())
 this.support_end.incr();
 this.L.move_to_front(j);
 }
 }
 }
};
Miniball.prototype.check_in=function(b){
 this.L.push_back(b);
};
Miniball.prototype.build=function(){
 this.B.reset();
 this.support_end.set(this.L.begin());
 this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
 return(this.B.center());
};
Miniball.prototype.radius=function(){
 return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
 //create Miniball object
 var mb=new Miniball();
 //auxiliary vector
 var corner=new Vector3();
 //iterate over all visible mesh nodes in the scene
 for(i=0;i<scene.meshes.count;i++){
 var mesh=scene.meshes.getByIndex(i);
 if(!mesh.visible) continue;
 //local to parent transformation matrix
 var trans=mesh.transform;
 //build local to world transformation matrix by recursively
 //multiplying the parent's transf. matrix on the right
 var parent=mesh.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 //get the bbox of the mesh (local coordinates)
 var bbox=mesh.computeBoundingBox();
 //transform the local bounding box corner coordinates to
 //world coordinates for bounding sphere determination
 //BBox.min
 corner.set(bbox.min);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //BBox.max
 corner.set(bbox.max);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 //remaining six BBox corners
 corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
 corner.set(trans.transformPosition(corner));
 mb.check_in(new Array(corner.x, corner.y, corner.z));
 }
 //compute the smallest enclosing bounding sphere
 mb.build();
 //
 //current camera settings
 //
 var camera=scene.cameras.getByIndex(0);
 var res=''; //initialize result string
 //aperture angle of the virtual camera (perspective projection) *or*
 //orthographic scale (orthographic projection)
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov*180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf('\n3Daac=%s,', aac);
 }else{
 camera.viewPlaneSize=2.*mb.radius();
 res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
 }
 //camera roll
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf('\n3Droll=%s,',roll);
 //target to camera vector
 var c2c=new Vector3();
 c2c.set(camera.position);
 c2c.subtractInPlace(camera.targetPosition);
 c2c.normalize();
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
 //
 //new camera settings
 //
 //bounding sphere centre --> new camera target
 var coo=new Vector3();
 coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
 if(coo.length)
 res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
 //radius of orbit
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
 }else{
 //orthographic projection
 var roo=mb.radius();
 }
 res+=host.util.printf('\n3Droo=%s,', roo);
 //update camera settings in the viewer
 var currol=camera.roll;
 camera.targetPosition.set(coo);
 camera.position.set(coo.add(c2c.scale(roo)));
 camera.roll=currol;
 //determine background colour
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
 //determine lighting scheme
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=host.util.printf('\n3Dlights=%s,', curlights);
 //determine global render mode
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 }
 if(currender!='Solid')
 res+=host.util.printf('\n3Drender=%s,', currender);
 //write result string to the console
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Copy and paste the following text to the\n'+
 '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
 var camera=scene.cameras.getByIndex(0);
 var coo=camera.targetPosition;
 var c2c=camera.position.subtract(coo);
 var roo=c2c.length;
 c2c.normalize();
 var res='VIEW%=insert optional name here\n';
 if(!(coo.x==0 && coo.y==0 && coo.z==0))
 res+=host.util.printf(' COO=%s %s %s\n', coo.x, coo.y, coo.z);
 if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
 res+=host.util.printf(' C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
 if(roo > 1e-9)
 res+=host.util.printf(' ROO=%s\n', roo);
 var roll = camera.roll*180/Math.PI;
 if(host.util.printf('%.4f', roll)!=0)
 res+=host.util.printf(' ROLL=%s\n', roll);
 if(camera.projectionType==camera.TYPE_PERSPECTIVE){
 var aac=camera.fov * 180/Math.PI;
 if(host.util.printf('%.4f', aac)!=30)
 res+=host.util.printf(' AAC=%s\n', aac);
 }else{
 if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
 res+=host.util.printf(' ORTHO=%s\n', 1./camera.viewPlaneSize);
 }
 rgb=scene.background.getColor();
 if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
 res+=host.util.printf(' BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
 switch(scene.lightScheme){
 case scene.LIGHT_MODE_FILE:
 curlights='Artwork';break;
 case scene.LIGHT_MODE_NONE:
 curlights='None';break;
 case scene.LIGHT_MODE_WHITE:
 curlights='White';break;
 case scene.LIGHT_MODE_DAY:
 curlights='Day';break;
 case scene.LIGHT_MODE_NIGHT:
 curlights='Night';break;
 case scene.LIGHT_MODE_BRIGHT:
 curlights='Hard';break;
 case scene.LIGHT_MODE_RGB:
 curlights='Primary';break;
 case scene.LIGHT_MODE_BLUE:
 curlights='Blue';break;
 case scene.LIGHT_MODE_RED:
 curlights='Red';break;
 case scene.LIGHT_MODE_CUBE:
 curlights='Cube';break;
 case scene.LIGHT_MODE_CAD:
 curlights='CAD';break;
 case scene.LIGHT_MODE_HEADLAMP:
 curlights='Headlamp';break;
 }
 if(curlights!='Artwork')
 res+=' LIGHTS='+curlights+'\n';
 switch(scene.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 defaultrender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 defaultrender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 defaultrender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 defaultrender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 defaultrender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 defaultrender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 defaultrender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 defaultrender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 defaultrender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 defaultrender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 defaultrender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 defaultrender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 defaultrender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 defaultrender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 defaultrender='HiddenWireframe';break;
 }
 if(defaultrender!='Solid')
 res+=' RENDERMODE='+defaultrender+'\n';

 //detect existing Clipping Plane (3D Cross Section)
 var clip=null;
 if(
 clip=scene.nodes.getByName('$$$$$$')||
 clip=scene.nodes.getByName('Clipping Plane')
);
 for(var i=0;i<scene.nodes.count;i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd==clip||nd.name=='') continue;
 var ndUTFName='';
 for (var j=0; j<nd.name.length; j++) {
 var theUnicode = nd.name.charCodeAt(j).toString(16);
 while (theUnicode.length<4) theUnicode = '0' + theUnicode;
 ndUTFName += theUnicode;
 }
 var end=nd.name.lastIndexOf('.');
 if(end>0) var ndUserName=nd.name.substr(0,end);
 else var ndUserName=nd.name;
 respart=' PART='+ndUserName+'\n';
 respart+=' UTF16NAME='+ndUTFName+'\n';
 defaultvals=true;
 if(!nd.visible){
 respart+=' VISIBLE=false\n';
 defaultvals=false;
 }
 if(nd.opacity<1.0){
 respart+=' OPACITY='+nd.opacity+'\n';
 defaultvals=false;
 }
 if(nd.constructor.name=='Mesh'){
 currender=defaultrender;
 switch(nd.renderMode){
 case scene.RENDER_MODE_BOUNDING_BOX:
 currender='BoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
 currender='TransparentBoundingBox';break;
 case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
 currender='TransparentBoundingBoxOutline';break;
 case scene.RENDER_MODE_VERTICES:
 currender='Vertices';break;
 case scene.RENDER_MODE_SHADED_VERTICES:
 currender='ShadedVertices';break;
 case scene.RENDER_MODE_WIREFRAME:
 currender='Wireframe';break;
 case scene.RENDER_MODE_SHADED_WIREFRAME:
 currender='ShadedWireframe';break;
 case scene.RENDER_MODE_SOLID:
 currender='Solid';break;
 case scene.RENDER_MODE_TRANSPARENT:
 currender='Transparent';break;
 case scene.RENDER_MODE_SOLID_WIREFRAME:
 currender='SolidWireframe';break;
 case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
 currender='TransparentWireframe';break;
 case scene.RENDER_MODE_ILLUSTRATION:
 currender='Illustration';break;
 case scene.RENDER_MODE_SOLID_OUTLINE:
 currender='SolidOutline';break;
 case scene.RENDER_MODE_SHADED_ILLUSTRATION:
 currender='ShadedIllustration';break;
 case scene.RENDER_MODE_HIDDEN_WIREFRAME:
 currender='HiddenWireframe';break;
 //case scene.RENDER_MODE_DEFAULT:
 // currender='Default';break;
 }
 if(currender!=defaultrender){
 respart+=' RENDERMODE='+currender+'\n';
 defaultvals=false;
 }
 }
 if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
 var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
 var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
 var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
 respart+=' TRANSFORM='
 +lvec.x+' '+lvec.y+' '+lvec.z+' '
 +uvec.x+' '+uvec.y+' '+uvec.z+' '
 +vvec.x+' '+vvec.y+' '+vvec.z+' '
 +nd.transform.translation.x+' '
 +nd.transform.translation.y+' '
 +nd.transform.translation.z+'\n';
 defaultvals=false;
 }
 respart+=' END\n';
 if(!defaultvals) res+=respart;
 }
 if(clip){
 var centre=clip.transform.translation;
 var normal=clip.transform.transformDirection(new Vector3(0,0,1));
 res+=' CROSSSECT\n';
 if(!(centre.x==0 && centre.y==0 && centre.z==0))
 res+=host.util.printf(
 ' CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
 if(!(normal.x==1 && normal.y==0 && normal.z==0))
 res+=host.util.printf(
 ' NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
 res+=host.util.printf(
 ' VISIBLE=%s\n', clip.visible);
 res+=host.util.printf(
 ' PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
 clip.material.emissiveColor.g, clip.material.emissiveColor.b);
 res+=host.util.printf(
 ' OPACITY=%s\n', clip.opacity);
 res+=host.util.printf(
 ' INTERSECTIONCOLOR=%s %s %s\n',
 clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
 res+=' END\n';
// for(var propt in clip){
// console.println(propt+':'+clip[propt]);
// }
 }
 res+='END\n';
 host.console.show();
// host.console.clear();
 host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
 '%% predefined views (See option "3Dviews"!).\n%%\n' +
 '%% The view may be given a name after VIEW=...\n' +
 '%% (Remove \'%\' in front of \'=\'.)\n%%');
 host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
 switch(e.menuItemName){
 case "dfltview": calc3Dopts(); break;
 case "currview": get3Dview(); break;
 case "csection":
 addremoveClipPlane(e.menuItemChecked);
 break;
 }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
 if(e.selected&&e.node.name!=''){
 target=e.node;
 }else{
 target=null;
 }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
 var clip=null;
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
 if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
 scene.nodes.getByName('Clipping Plane')){ //added via context menu
 runtime.removeCustomMenuItem("csection");
 runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
 }
 if(clip){//plane in predefined views must be rotated by 90 deg around normal
 clip.transform.rotateAboutLineInPlace(
 Math.PI/2,clip.transform.translation,
 clip.transform.transformDirection(new Vector3(0,0,1))
);
 }
 for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
 target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
 var backtrans=new Matrix4x4();
 var trgt=null;
 if(target) {
 trgt=target;
 var backtrans=new Matrix4x4();
 var trans=trgt.transform;
 var parent=trgt.parent;
 while(parent.transform){
 //build local to world transformation matrix
 trans.multiplyInPlace(parent.transform);
 //also build world to local back-transformation matrix
 backtrans.multiplyInPlace(parent.transform.inverse.transpose);
 parent=parent.parent;
 }
 backtrans.transposeInPlace();
 }else{
 if(
 trgt=scene.nodes.getByName('$$$$$$')||
 trgt=scene.nodes.getByName('Clipping Plane')
) var trans=trgt.transform;
 }
 if(!trgt) return;

 var tname=trgt.name;
 if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
 if(target)
 var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
 else
 var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
 var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

 //get the centre of the mesh
 if(target&&trgt.constructor.name=='Mesh'){
 var centre=trans.transformPosition(trgt.computeBoundingBox().center);
 }else{ //part group (Node3 parent node, clipping plane)
 var centre=new Vector3(trans.translation);
 }
 switch(e.characterCode){
 case 30://tilt up
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
 break;
 case 31://tilt down
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,tiltAxis);
 trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
 break;
 case 28://spin right
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 29://spin left
 if(e.ctrlKeyDown&&target){
 trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
 }else{
 rot4x4[tname].rotateAboutLineInPlace(
 Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
 trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
 }
 break;
 case 120: //x
 translateTarget(trans, new Vector3(1,0,0), e);
 break;
 case 121: //y
 translateTarget(trans, new Vector3(0,1,0), e);
 break;
 case 122: //z
 translateTarget(trans, new Vector3(0,0,1), e);
 break;
 case 88: //shift + x
 translateTarget(trans, new Vector3(-1,0,0), e);
 break;
 case 89: //shift + y
 translateTarget(trans, new Vector3(0,-1,0), e);
 break;
 case 90: //shift + z
 translateTarget(trans, new Vector3(0,0,-1), e);
 break;
 case 115: //s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 case 83: //shift + s
 trans.translateInPlace(centre.scale(-1));
 trans.scaleInPlace(1/1.01);
 trans.translateInPlace(centre.scale(1));
 break;
 }
 trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
 var cam=scene.cameras.getByIndex(0);
 if(cam.projectionType==cam.TYPE_PERSPECTIVE){
 var scale=Math.tan(cam.fov/2)
 *cam.targetPosition.subtract(cam.position).length
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }else{
 var scale=cam.viewPlaneSize/2
 /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
 }
 t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
 var curTrans=getCurTrans();
 var clip=scene.createClippingPlane();
 if(chk){
 //add Clipping Plane and place its center either into the camera target
 //position or into the centre of the currently selected mesh node
 var centre=new Vector3();
 if(target){
 var trans=target.transform;
 var parent=target.parent;
 while(parent.transform){
 trans=trans.multiply(parent.transform);
 parent=parent.parent;
 }
 if(target.constructor.name=='Mesh'){
 var centre=trans.transformPosition(target.computeBoundingBox().center);
 }else{
 var centre=new Vector3(trans.translation);
 }
 target=null;
 }else{
 centre.set(scene.cameras.getByIndex(0).targetPosition);
 }
 clip.transform.setView(
 new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
 clip.transform.translateInPlace(centre);
 }else{
 if(
 scene.nodes.getByName('$$$$$$')||
 scene.nodes.getByName('Clipping Plane')
){
 clip.remove();clip=null;
 }
 }
 restoreTrans(curTrans);
 return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
 var tA=new Array();
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(nd.name=='') continue;
 tA[nd.name]=new Matrix4x4(nd.transform);
 }
 return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
 for(var i=0; i<scene.nodes.count; i++){
 var nd=scene.nodes.getByIndex(i);
 if(tA[nd.name]) nd.transform.set(tA[nd.name]);
 }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();

Chapter 9. Computing 3D Neighborhood Motion Maps 93

of the parameter space of digitized rigid motions. The description of this last part will be
given in the next section. Note that the proposed approach could be also applied to solve
a similar problem in 2D, i.e. generation of the different images of a 2D neighborhood
under 2D digitized rigid motions – a solution to this problem was already proposed by
Ngo et al. [26].

9.4.1 Bifurcation and Critical Values

In [65], the authors show how to describe an arrangement of quadric by sweeping a plane
along a generic direction. Using the theory of generalized critical values [44, 68, 69] we
show how to compute a point per open connected component of an arrangement of
quadrics using a projection along a non-generic direction. Hereafter, we consider the
direction of the a-axis. Then by critical values we denote values a at which the topology
of the arrangement changes.

We consider an arrangement of smooth quadrics defined by zero sets of the all respective
polynomial for Q. Note that, if quadrics have isolated singularities then the bifurcation
set (see Definition 9.1) is still well defined and includes projections of these singularities.
In the following, for p, q, r ∈ Z, we denote by: Sp the surface given by Qp(a, b, c) = 0; Cp,q

the curve defined by Qp = Qq = 0 and Pp,q,r the points obtained as Qp = Qq = Qr = 0.
We assume that each Sp is a smooth surface of dimension two, each Cp,q is a smooth curve
of dimension one. Also, we denote by A the set of maximally connected components of
R3 \

⋃
p Sp.

Let C be an open cell of A. We can associate to C the extremal values Cinf = inf({a |
(a, b, c) ∈ C}) and Csup = sup({a | (a, b, c) ∈ C}). We will show in this section that these
values are included in a bifurcation set. Furthermore, we consider that a projection map
on the first coordinate a is denoted by ρ, and its restriction to a submanifold M ⊂ R3

is denoted by ρ|M. Moreover, for a0 ∈ R we denote by Ma0 the set ρ−1
|M(a0). Similarly,

for an open interval (a0, a1) ⊂ R we denote by M(a0,a1) the set ρ−1
|M((a0, a1)).

We are interested in computing the set of values a above which the topology of the cells
of A changes. We show in Lemma 9.2 that this set is included in the finite bifurcation
set [70] of the projections on the first axis restricted to different manifolds.

Definition 9.1. Let M be a submanifold of R3. Then a bifurcation set of ρ|M is the
smallest set B(ρ|M) ⊂ R such that ρ : M \ ρ−1

(
B(ρ|M)

)
→ R \ B(ρ|M) is a locally

trivial fibration (see Figure 9.4).

Chapter 9. Computing 3D Neighborhood Motion Maps 94

a0 a1
a

b

(a)

a0 a1
a

b

(b)

Figure 9.4: 2D examples demonstrating a local trivial (a) and a nontrivial (b)
fibrations. In (a), the topology of the arrangement above the interval (a0, a1)
is constant, while in (b) it is not, i.e. in (b) there is an element a∗ of the
bifurcation set B in the interval (a0, a1). Note that in (a) a0, a1 ∈ B while in
(b) a0, a1 /∈ B.

More specifically, for all a0 ∈ R \B(ρ|M), there exists ε > 0 and a homeomorphism

ψ : (a0 − ε, a0 + ε) × Ma0 →M(a0−ε,a0+ε),

such that ρ ◦ ψ(x,p) = x for all (x,p) ∈ (a0 − ε, a0 + ε) × Ma0 . Figure 9.4 illustrates
a 2D trivial and a 2D nontrivial fibrations.

In the following, we will consider the finite set B ⊂ R defined as the union of the
bifurcation sets of ρ|Sp

and ρ|Cp,q
and the projections of Pp,q,r [70]. More precisely, we

define:
Bp = B(ρ|Sp

) ∪
⋃
q 6=p

B(ρ|Cp,q
) ∪

⋃
q 6=p,r 6=p,q 6=r

ρ(Pp,q,r)

and B =
⋃

pBp. Then we state the following results which allow us to focus—during
Step 2 of the algorithm—on a subset of quadrics of Q, i.e. a subset of quadrics which
bound a maximal open connected component.

Lemma 9.2. Let C be a maximal open connected cell of R3 \
⋃

p Sp. Let β be the lowest
value of B such that Cinf < β and let v ∈ (Cinf , β). Finally, let ∂Cv be the boundary
of Cv defined as an intersection of C with a plane a = v, and let JC be a set of edges.
More precisely, JC is the set of indexes p such that the intersection of Sp with ∂Cv has
dimension one. Then Cinf ∈ Bp for all p ∈ JC.

Proof. Let p ∈ JC and let p be a point on Sp ∩ ∂Cv that does not belong to any surface
Sq for q 6= p. Let α ≤ Cinf be the maximal element of Bp lower than v. Then ρ|Sp

and
the ρ|Cp,q

are trivial fibrations above (α, β) and ρ(Pp,q,r)∩ (α, β) = ∅ for q 6= p and r 6= p

Chapter 9. Computing 3D Neighborhood Motion Maps 95

v x Cinfa
b

c

Tε(φ(x))

Csup

Figure 9.5: Visualization of a maximal connected component C bounded by two
quadrics: Q1 = ab+ c (the green-orange surface) and Q2 = a2 + 4ab+ b2 + c2−
4c + 1 (the blue surface). The two red curves represent the intersection of the
surfaces i.e., Q1 = Q2 = 0. The pink curve represents ∂Cv. The a-, b- and c-
axes were re-oriented and the origin changed for a better visualization.

different integers. In particular, the points of the curves Cp,q never cross above (α, β).
More formally, there exists a continuous function φ : (α, β) → Sp such that φ(v) = p,
ρ ◦ φ(x) = x and Qq(φ(x)) 6= 0 for all q 6= p.

Let Tε be an open ball of radius ε centered at φ(v) and defined as Tε = {y = (a, b, c) ∈
R3 | v ∈ [Cinf , v] and ‖(a, b, c) − φ(v)‖ < ε}. We now prove by contradiction that
α = Cinf . If α < Cinf , then there exists a sufficiently small ε > 0 such that the respective
intersections of Tε with Qp < 0 and Qp > 0 are connected and such that Tε does not
intersect any Sq for q 6= p. Since p ∈ Tε, the intersection of Tε with C is not empty.
Moreover, C is a maximally connected component in the complement of the union of
Sj , such that one of the two connected components of Tε \ Sp is included in C. Thus,
the ball Tε intersects Ca for all a ∈ [Cinf , v]. In particular, CCinf is not empty, which is
a contradiction with the definition of Cinf . In particular, Cinf = α, which allows us to
conclude that α = Cinf and Cinf ∈ Bp.

Figure 9.5 shows a maximal connected component C bounded by two quadrics, and
Figure 9.10 illustrates intervals such that the topology of some Ca, a ∈ (α, β) remains
constant.

For each value u ∈ B, we denote by Ja ⊂ N the set of indexes i such that u ∈ Bp.
Moreover, for a set of indexes Ja, we denote by AJa the set of maximally open connected
components of R3 \

⋃
j∈Ja

Sj .

Chapter 9. Computing 3D Neighborhood Motion Maps 96

Corollary 9.3. Let C be a maximal open connected cell of R3 \
⋃

p Sp. Let m > Cinf

be the smallest value of B greater than Cinf . For all a ∈ (Cinf ,m), there exists a cell
C′ ∈ AJCinf

such that C′a ⊂ Ca.

Proof. According to Lemma 9.2, Cinf is contained in all Bp such that Sp intersects the
border of Ca with dimension one. In particular, one of the cells of AJCinf

∩ ρ−1(a) is
included in Ca.

From a constructive point of view, the authors of [69] showed that the bifurcation set
is included in the union of the critical and asymptotic critical values. More specifically,
given a polynomial map f : M→ R, we have B(f) ⊂ K(f) ∪K∞(f), where K(f) are
the critical values of f and K∞ are its asymptotic critical values. In [65], the authors
called the points of K(ρ|Sp

) events of type A, the points of K(ρ|Cp,q
) events of type B

and the points ρ(Pp,q,r) events of type C. We extend their classification for degenerate
projections, and say that the points of K∞(ρ|Sp

) are events of type A∞ and the points
of K∞(ρ|Cp,q

) are events of type B∞.

From a computational point of view, we recall in the next section how to compute the
critical values of types A, B and C. For the types A∞ and B∞, we use the results from
[69] and simplify them for the case of quadrics.

Finally, as described in Section 9.4.4, our strategy will be to compute the generalized
critical values a and for each value, to store also Ja the set of indexes i such that either:

• a ∈ K(ρ|Sp
) ∪K∞(ρ|Sp

)

• a ∈ K(ρ|Cp,q
) ∪K∞(ρ|Cp,q

) for q 6= p

• a ∈ ρ(Pp,q,r) for q 6= p, r 6= p and q 6= r

This allows us to reduce the number of quadrics to consider in the intermediate steps of
our sweeping plane algorithm.

9.4.2 Detection of Critical Values

Type A. The first type corresponds to values s ∈ K(ρ|Sp
) above which topology of

open connected components in A changes. Algebraically, such an event corresponds to
a value s ∈ R for which there is a solution to the system Qp(s, b, c) = ∂bQp(s, b, c) =
∂cQp(s, b, c) = 0, and s is called a-critical value. In other words, this corresponds to the
situation a = s is tangent to a quadric Qp. Note also that, the critical values of the type
A include projections of the isolated singularities.

Chapter 9. Computing 3D Neighborhood Motion Maps 97

(a) (b) (c)

Figure 9.6: Example of events of: type A – a sweeping plane tangent at a point
to a quadric (a); type B – a curve of an intersection of two quadrics lays in a
sweeping plane (b), and type C – a point of an intersection of three quadrics
lays in a sweeping plane (c). Sets of points, which induce an event are depicted
in red and a sweeping plane is depicted in green.

Type B. This type corresponds to the case s ∈ K(ρ|Cp,q
). Such an event corresponds

to an a-critical value for which there are solutions to the system Qp(s, b, c) = Qq(s, b, c) =
(∇Qp×∇Qq)1(s, b, c) = 0. In other words, a curve defined byQp(s, b, c) = Qq(s, b, c) = 0,
is tangent to a plane orthogonal to the a-axis.

Type C. There are values s ∈ ρ(Pp,q,r) above which the topology of the open connected
components in A changes. An a-critical value is such that there are solutions to the
system Qp(s, b, c) = Qq(s, b, c) = Qr(s, b, c) = 0. In other words, the quadrics intersect
in a point. Note that it can happen that an intersection between three quadrics is a
curve. This issue can be solved if a curve projects on a point, thanks to the elimination
theory and use of resultants or Gröbner basis. Indeed, we can compute a univariate
polynomial which vanishes on the projection of the curve [71].

For more information about events of the types A, B and C we refer readers to [65].
Figure 9.6 shows examples of events of types A, B and C.

Right now, we are going to discuss the cases of asymptotic critical values.

Type A∞. This type of critical values corresponds to the situation when a plane
orthogonal to one of the coordinate axes is tangent to a quadric at a point at infinity
(see Figure 9.7).

Chapter 9. Computing 3D Neighborhood Motion Maps 98

Lemma 9.4. Let S be a smooth quadric defined by Q(a, b, c) = 0. Denoting by M(a)

the matrix

 ∂2Q
∂b2

∂2Q
∂b ∂c

∂Q
∂b (a, 0, 0)

∂2Q
∂c ∂b

∂2Q
∂c2

∂Q
∂c (a, 0, 0)

 that depends only on a,

K∞(ρ|S) ⊂ {a |M(a) has rank at most 1}.

Proof. Consider the mapping f : R3 → R2 such that (a, b, c) 7→ (a,Q(a, b, c)). The
definition of K∞ implies K∞(ρ|S) = K∞(f)∩R×{0}. Let q(a, b, c) = max(| ∂Q

∂b
|,| ∂Q

∂c
|)

max(| ∂Q
∂a
|,| ∂Q

∂b
|,| ∂Q

∂c
|)

.

Then using [69, Proposition 2.5 and Definition 3.1] with df =

 1 0 0
∂Q
∂a

∂Q
∂b

∂Q
∂c

, there

exists a sequence (an, bn, cn) ∈ R3 such that |bn| + |cn| → ∞ and an → a and (|bn| +
|cn|)q(an, bn, cn) → 0. In particular, since ∂Q

∂a ,
∂Q
∂b and ∂Q

∂c are linear functions, this
implies that in the definition of K∞, the expression |bn|+|cn| divided by the denominator
of q(an, bn, cn) is bounded. In particular the numerator of q(an, bn, cn) converges toward
0. More specifically, ∂Q

∂b and ∂Q
∂c converge toward 0. On the other hand, either |bn| or

|cn| goes toward infinity. Assume without restriction of generality that |bn| goes toward
infinity. In this case, the function ∂2Q

∂c2
∂Q
∂b −

∂2Q
∂b ∂c

∂Q
∂c is a linear function that depends

only on b. Then this function converges toward 0 if and only if the coefficient in front
of b in the function and its constant coefficient are 0. In particular, from the minor-
rank relation and the symmetry of the second order partial derivatives we have that if
∂2Q
∂c2 or ∂2Q

∂b ∂c is non–zero, the matrix M(a) has rank 1. If both are 0, then with similar
arguments, we can see that M(a) is the null matrix. Thus, K∞ is a subset of a such
that M(a) has a rank less than or equal to 1.

The algorithm to detect this type of events is as follows. Step 1: we compute
∂bQ(a, b, c) = ub + vc + wa + t and ∂cQ(a, b, c) = u′b + v′c + w′a + t′, where
u, v, w, t, u′, v′, w′, t′ ∈ Z are coefficients of the corresponding polynomials and Q ∈ Q.
Step 2: let v stands for the cross product of vb = (u, v, wa+ t) and vc = (u′, v′, w′a+ t′).
Note that the vectors vb and vc represent the rows of M(a). Finally, we solve for a such
that all the elements of v are equal to 0, i.e. all the second minors of M(a) are equal to
0, in other words when the rank of M(a) is lower than 2.

Type B∞. In this case we are considering the asymptotic critical points of the projec-
tion restricted to a curve defined by the intersection of two quadrics Qp, Qq ∈ Q, p, q ∈ Z
and p 6= q. Using [69, Proposition 4.2], these correspond to the a-coordinate of the sweep-
ing planes that cross the projective closure of the curve at infinity. More formally, we

Chapter 9. Computing 3D Neighborhood Motion Maps 99

Figure 9.7: Example of asymptotic critical value. A line (in blue) is parallel
to b-axis and tangent to an asymptote—the red curves laying on the yellow
surface—in a point at infinity. For readability only a part of the yellow surface
is presented.

have:

K∞(ρ|Cp,q
) = {a | ∃(an, bn, cn) ∈ Cp,q such that |bn|+ |cn| → +∞ and an → a}.

In particular, this set is also the set of values a such that either the projection of Cp,q

on the (a, b)-plane or the projection of Cp,q on the (a, c)-plane has an asymptote in a.

According to [69, Proposition 4.2], these are the elements of a non-properness set of
a projection map. More formally, we say that p belongs to a non-properness set of a
projection map π if for each neighborhood Y of p we have that π−1(Y) is not bounded.
The properties of this set and the algorithms to compute it have been studied notably
in [72–74]. In our case the non-properness set of the projection restricted to Cp,q is the
set of a-coordinates of the sweeping planes that cross at infinity the projective closure
of Cp,q, i.e., the smallest projective algebraic variety containing Cp,q.

To detect such a case we apply the following steps. Step 1: we project the curve Cp,q

to the (a, b)-plane (resp. (a, c)-plane) eliminating the c (resp. b) variable, and denote
the corresponding polynomials as Pb(a, b) (resp. Pc(a, c)). Step 2: let Cb(a) and Cc(a)
stand for head coefficients—coefficients of leading monomials—of Pb(a, b) and Pc(a, c),
respectively. The asymptotic critical value for a pair of quadrics happens for Cb(a) = 0
or Cc(a) = 0. For instance, let us consider the polynomial (2a − 1)c2 + a2. Then,
the leading coefficient is 2a − 1 and when a = 1

2 we have that c can take any value.

Chapter 9. Computing 3D Neighborhood Motion Maps 100

a
b

c

a = 1
2

Figure 9.8: Visualization of a critical event of B∞ type. The intersection of
quadrics: Q1 = bc+ a (the orange-green surface) and Q2 = b2 − bc+ a− 1 (the
blue surface) leads to the red curves which exhibit an asymptotic behavior at
a = 1

2 . The a-, b- and c- axes are re-oriented and the origin is changed for a
better visualization effect. The respective projections of C1,2 onto the (a, b)-
and (a, c)-plane are illustrated in Figure 9.9.

(a) (b)

Figure 9.9: Visualization of the projections of Cp,q (the light blue curve) defined
by the same quadrics as in Figure 9.8. These projections are Pb(a, b) = b2 +
2a − 1, (a) and Pc(a, c) = 2ac2 + a2 − c2, (b). We have an asymptote in the
(a, c)-plane for 2a− 1 = 0, i.e. when a = 1

2 – which is marked by a pink vertical
line.

Indeed, there is an asymptote for a = 1
2 . Figure 9.8 illustrates an event of B∞ type and

Figure 9.9 the corresponding projections.

Chapter 9. Computing 3D Neighborhood Motion Maps 101

9.4.3 Sorting Critical Values

In this section we focus on the representation of a-critical values as real algebraic
numbers—roots of univariate polynomials—and operations such as comparisons of them,
which are necessary to sort a-critical values.

Similarly to Mourrain et al. [65], we represent a real algebraic number α as a pair: an
irreducible univariate polynomial P ∈ Z[a] such that P (α) = 0 and an open isolating
interval (g, h), with g, h ∈ Q, containing α and such that there is no other root of P in
this interval. Note that the isolation of the roots of an irreducible univariate polynomial
can be made using Descartes’ rule [75].

Let α = (P, (g, h)) and β = (Q, (i, j)) such that P,Q ∈ Z[a] and g, h, i, j ∈ Q, stand for
two real algebraic numbers. Then we can conclude if α = β while checking a sign of gcd
– a polynomial greatest common divisors of P and Q at an intersecting interval. Note
that, when gcd(P,Q) is a polynomial then its roots are the common roots of P and Q.
On the other hand, to conclude if α is greater than β or β greater than α, we apply a
strategy which consists of refining the isolating intervals until they are disjoint. When
two intervals are disjoint then we can compare their bounds and conclude if α is greater
than β (or β greater than α)1. To refine an isolating interval of real roots, one can use
e.g., bisection of intervals, Newton interval method [76], [77, Chapter 5] or quadratic
interval refinement method proposed by Abbot [78].

The ability to compare two different algebraic numbers allows us to sort a list of events
which can be done with well-known sorting algorithms such as quicksort.

9.4.4 Sweeping a Set of Quadrics

After sorting the set of a-critical values we are ready to compute sample points of open
cells. The sweeping plane moves along the a-axis and stops between two consecutive a-
critical values in a midpoint. At such a midpoint, the sweeping plane intersects the set of
quadrics. On this plane orthogonal to the a-axis, the subproblem becomes the arrange-
ment of conics, which can be solved by applying a strategy similar to the one developed
for the main problem. More precisely, we compute and sort a set of b-critical values (or
c-critical values) in the arrangement of conics and sweep it by a line. Figure 9.10 shows
conics for three a-critical values in an arrangement of two quadrics.

The remaining question is which quadrics we should use at each midpoint to avoid
missing an open cell. In our approach we use all the quadrics of Q for the first midpoint

1Our implementation of real algebraic numbers and their comparison can be downloaded from https:
//github.com/copyme/RigidMotionsMapleTools

https://github.com/copyme/RigidMotionsMapleTools
https://github.com/copyme/RigidMotionsMapleTools

Chapter 9. Computing 3D Neighborhood Motion Maps 102

Figure 9.10: A visualization of sweeping of a set of quadrics. Intersection planes
at three different midpoints depicted in green. Between the planes we have a-
critical values – a values in which topology of an arrangement changes. Conics
obtain from quadrics in red and black.

(see Figure 9.11). Then for any other midpoint we use only the quadrics related to
the lowermost critical value from the pair of a-critical values that bound this midpoint.
Indeed, doing so we ensure that at the end of our strategy we collect at least one
sample point for each full dimensional open cell thanks to Lemma 9.2, Corollary 9.3 and
Lemma 9.4.

9.5 Recovering Translation Parameter Values

The algorithm proposed in the previous section gives us the set R of rational sample
points (a, b, c) ∈ Q3, which correspond to the rotation parameters. In this section we
discuss how to obtain sample points (t1, t2, t3) of the translation part for each (a, b, c) ∈ R
and how to generate different images of Nr(p) under rigid motions.

Let us first note that Equation (9.1) under the assumption of t ∈
(
−1

2 ,
1
2

)3
defines

the set of planes in the range C(0) for each (a, b, c) ∈ R, by setting d ∈ Nr(p) and
k ∈ H(Nr(p))3. These planes divide C(0) into cuboidal regions. Figure 9.12 illustrates
an example of such critical planes in C(0).

To obtain different images of Nr(p) rotated by a given a, b, c ∈ Q, under translations
(t1, t2, t3) ∈ C(0), we compute the arrangement of planes in C(0) which involves sorting
of critical planes and finding a midpoint of each cuboidal region bounded by them.

Chapter 9. Computing 3D Neighborhood Motion Maps 103

(a) (b)

(c)

Figure 9.11: The first intersections of 81, 513 and 741 quadrics obtained for
N1(p),N2(p) and N3(p), respectively.

Remark 9.5. Note that we can have several sample points (a, b, c) inducing the topolog-
ically equivalent arrangement of planes (the order of planes is identical). Therefore, to
avoid unnecessary calculations we can define a hash function which returns a different
signature for each sample point (a, b, c) which induces a different order of the critical
planes. To define such a hash function, let I stands for a collection of indexes of critical
planes. Then we define the hash function that returns the sorted indexes of I with
respect to the order of critical planes.

Chapter 9. Computing 3D Neighborhood Motion Maps 104

(a) (b) (c)

Figure 9.12: Visualization of the critical planes for N1(p) and some (a, b, c).
For the sake of visibility three types of orthogonal critical planes are presented
separately.

9.6 Case Study

In this section we would like to address some practical issues of the proposed algorithm
while considering a particular neighborhood, i.e. we consider N1(p).

9.6.1 Combinatorial Issue

The number of quadrics obtained directly from Equation (9.6) for N1(p) is 441. In
this section we show that this number is reduced to 81 by discarding those which are
always strictly positive (resp. negative) and ones which are redundant. Note that similar
studies remain valid for different neighborhoods. Indeed, for N2(p) and N3(p) we have
513 and 741 quadrics, respectively2.

Let us consider N1(p) and vectors u1 = (1, 0, 0) (resp. u2 = (0, 1, 0), u3 = (0, 0, 1)), and
h =

(
1
2 ,

1
2 ,

1
2

)
. Then we rewrite (9.4) as

ui · (k′ − h−Rd′) < ui · (k + h−Rd) (9.7)

for i = 1, 2, 3 where d,d′ ∈ N1(p),k,k′ ∈ H(N1(p))3. This induces

ki − k′i + 1− ui ·R(d− d′) > 0, (9.8)

where we know that q = ki−k′i +1 ∈ Z∩ [−1, 3]. We then consider the following different
cases of v = ‖d − d′‖, and we consider k and k′ such that for any R Equation 9.8 is
valid.

2The complete list of the polynomials can be downloaded from https://doi.org/10.5281/zenodo.
839212

 https://doi.org/10.5281/zenodo.839212
 https://doi.org/10.5281/zenodo.839212

Chapter 9. Computing 3D Neighborhood Motion Maps 105

1. when v = 0, then there is no q ∈ Z ∩ [−1, 3] satisfying (9.8),

2. when v = 1, then there are 6 different pairs of (d,d′) and we obtain q ∈ {0},

3. when v = 2, then there are 6 different pairs of (d,d′) and we obtain q ∈ {−1, 0, 1},

4. when v =
√

2, then there are 12 different pairs of (d,d′) and we obtain q ∈
{−1, 0, 1}.

Therefore, the number of valid quadrics Q[d,d′, ki, k
′
i] for each case is 0 (case 1), 6 (case

2), 18 (case 3) and 36 (case 4). Note that case 2 is included in case 3 up to a constant,
as that we can ignore the 6 quadrics. This finally gives us 18+36

2 = 27 quadrics per
direction and thus 81 in total.

9.6.2 Implementation and Experiments

We have implemented the proposed algorithm in Maple 2015 (or later) and our code
can be downloaded from https://github.com/copyme/RigidMotionsMapleTools. In
our implementation we have tried to obtain a good performance. Since the computation
of critical values and sample points are not difficult to parallelize, we implemented this
part of the algorithm in Maple Grid framework. Moreover, some parts of the algorithm
can be run on a POSIX compatible cluster. We have performed some tests on a machine
equipped with two processors Intel(R) Xeon(R) E5-2680 v2; clocked at 2.8 GHz, with
installed 251.717 GiB of memory and the CC-IN2P3 computational cluster in Lyon,
France.

After the uncoupling, we obtain 81, 513 and 741 quadrics for N1(p),N2(p) and N3(p),
respectively. Then the critical values are computed and sorted. This step takes in our
current implementation a few minutes for N1(p) and up to a few days for N2(p) and
N3(p) and currently cannot be computed on a cluster. In the next step the sample
points (a, b, c) are computed and used to compute the translational sample points. The
computation of different images of the image patch Nr(p) consists of calculating for each
sample point (a, b, c) an arrangement of planes in the (t1, t2, t3)-space (see Figure 9.12).
In such an arrangement, each sample point (t1, t2, t3) of a full dimensional cell bounded
by planes gives the translation part of rigid motions. Using this information, we generate
an image of Nr(p) by applying to it a digitized rigid motion given by the value of
(a, b, c, t1, t2, t3). Note that we observe that for different sample points (a, b, c) that
belong to the same full dimensional component, planes illustrated in Figure 9.12 change
their positions but not their order.

https://github.com/copyme/RigidMotionsMapleTools

Chapter 9. Computing 3D Neighborhood Motion Maps 106

(a) (b)

Figure 9.13: A visualization of N1(p) (a) and its image un-
der the digitized rigid motion given by a = 137473696921

274877906944 , b =
197619405511
274877906944 and c = 292588990511

274877906944 followed by the translation t =(
43854528425197322199609
219118627873808393511619 ,

−205083480683835568611135
438237255747616787023238 ,

−158884131792897818457165
438237255747616787023238

)
.

For a sake of simplification, N1(p) is presented layer-by-layer. Each point of
N1(p) is represented by a colored square with p in black, d = (−1, 0, 0) in a
dark blue, etc.

Essentially, the step of computing different images of Nr(p) is the most time consuming
and storage space and memory expensive, especially in the case of N2(p) and N3(p). It
is due to the fact that, in general, we compute much more than just one sample point
per connected component. Therefore, before computing translational sample points, it
is better to reduce the number of (a, b, c) sample points by computing their signatures—
discussed before—and keep only one sample point per signature. This step for N2(p)
and N3(p) requires from several days to a few weeks to be completed. Note that, we
do not provide exact times because, unfortunately, these were not collected during the
computations.

Finally, we have obtained (up to possible bugs in the current implementation):
6512, 761064 and 4012189 neighborhood motion maps for N1(p),N2(p) and N3(p),
respectively. The respective databases of neighborhood motion maps can be
downloaded from: https://doi.org/10.5281/zenodo.573014, https://doi.org/10.

5281/zenodo.573015 and https://doi.org/10.5281/zenodo.802850. Moreover, a
visualization tool 3DNMMVierwerDB can be downloaded from https://github.com/

copyme/NeighborhoodMotionMapsTools. Figure 9.13 shows some images of an image
patch for fixed (a, b, c) values and different (t1, t2, t3) values.

9.7 Future Work and Conclusion

In this chapter, we proposed a method to decompose the 6D parameter space of 3D rigid
motions for a given 3D finite digital set. We first uncoupled the six parameters of 3D

 https://doi.org/10.5281/zenodo.573014
 https://doi.org/10.5281/zenodo.573015
 https://doi.org/10.5281/zenodo.573015
https://doi.org/10.5281/zenodo.802850
https://github.com/copyme/NeighborhoodMotionMapsTools
https://github.com/copyme/NeighborhoodMotionMapsTools

Chapter 9. Computing 3D Neighborhood Motion Maps 107

rigid motions to end up with two systems in three variables, and started by studying an
arrangement of quadrics in R3.

Our approach to compute an arrangement of quadrics in 3D is similar to the one pro-
posed by Mourrain et al. [65] where the main differences are: we do not use generic
directions; we handle asymptotic cases and give new criteria to compute critical values
in polynomials of degree two; we compute and store at least one sample point for each
full dimensional open cell where Mourrain et al. [65] compute full adjacency informa-
tion for all cells in an arrangement. Moreover, we precompute all critical values a priori
where in the former approach only one type of critical values needs to be computed
before the main algorithm. Those sample points are then used to decompose the other
three-dimensional parameter space. We also provided our implementation.

There are four main issues—listed below—on which we have been working since the
publication of [48].

Issue 1. The second degree polynomials discussed in the problem of computing sample
points of the rotational part of the rigid motions exhibit interesting properties which may
lead to time improvements for computations of the events of B and C types. Indeed, one
can notice that having computed quadrics Qi[d,d′, ki, k

′
i](a, b, c), for example for i = 1,

it is possible to obtain all the remaining quadrics for i = 2 and i = 3 just by permuting
variables a, b, c of the polynomials of the computed set. One can also notice that the
different polynomial have different orbits i.e., number of permutations before arriving
at the starting polynomial. Our observation is that the polynomials can be split into
sets with respect to their orbits and each set can be stored as only one representative
polynomial per such a set. Then, instead of computing B and C events while using all
the polynomials, we would use only the representatives from each set. Indeed, from the
symmetry if two polynomials, each from a different set, should generate an event then
each permutation of them generates an event above the same critical value.

Issue 2. In the current version of the algorithm, we compute, per a set of conics
obtained from an intersection of a plane with quadrics at a midpoint, sample points
of all the connected components. This lead to a high number of sample points, in
general. In order to reduce the number of sample points, we expect that it is, in general,
sufficient to compute (b, c) sample points only for bounded connected components in
such arrangements of conics. This claim still requires to be confirmed.

Issue 3. Until now, our focus was related to a very specific application of the algorithm.
Nevertheless, we would like to generalize it in order to solve more general problems

Chapter 9. Computing 3D Neighborhood Motion Maps 108

involving arrangement of quadrics. Our algorithm can deal with relatively high number
of polynomials, therefore, we hope that making it more general would attract other
communities to use it.

Issue 4. We would like to use the neighborhood motion maps ofN3 to study alterations
of connectivity induced by digitized rigid motions in the Eulerian model.

Appendix A

Neighborhood motion maps for
GU

1 (4-neighborhood case)

Neighborhood motion maps for GU
1 are depicted as label maps for: θ ∈

(
0, π

6
)

in Fig-
ure A.1; and θ ∈

(
π
6 ,

π
4
)

in Figure A.2. Some neighborhood motion maps are symmetric
with respect to the origin i.e., a neighborhood motion map of the index (0, 0).

109

Appendix A. Neighborhood motion maps for GU
1 (4-neighborhood case) 110

(-2,2) (-1,2) (0,2) (1,2) (2,2)

(-2,1) (-1,1) (0,1) (1,1) (2,1)

(-2,0) (-1,0) (0,0) (1,0) (2,0)

(-2,-1) (-1,-1) (0,-1) (1,-1) (2,-1)

(-2,-2) (-1,-2) (0,-2) (1,-2) (2,-2)

Figure A.1: Neighborhood motion maps of GU
1 , as label maps, for θ ∈

(
0, π

6
)
.

Each label (p, q) corresponds to the frame fθ
p,q. Neighborhood motion maps

which correspond to non-injective zones are marked by red dashed frames. The
edges of the neighborhood motion maps graph are marked by color line segments
which connect different neighborhood motions maps (see Chapter 3 of Part I).

Appendix A. Neighborhood motion maps for GU
1 (4-neighborhood case) 111

(-2,2) (-1,2) (0,2) (1,2) (2,2)

(-2,1) (-1,1) (0,1) (1,1) (2,1)

(-2,0) (-1,0) (0,0) (1,0) (2,0)

(-2,-1) (-1,-1) (0,-1) (1,-1) (2,-1)

(-2,-2) (-1,-2) (0,-2) (1,-2) (2,-2)

Figure A.2: Neighborhood motion maps of GU
1 , as label maps, for θ ∈

(
π
6 ,

π
4
)

that differ from these for θ ∈
(
0, π

6
)
. Each label (p, q) corresponds to the frame

fθ
p,q. Neighborhood motion maps which correspond to non-injective zones are

marked by red dashed frames. The edges of the neighborhood motion maps
graph are marked by color line segments which connect different neighborhood
motions maps (see Chapter 3 of Part I). The elements which have not changed
with respect to the set illustrated in Figure A.1 are faded.

Appendix B

Neighborhood motion maps for
GU

2 (8-neighborhood case)

Neighborhood motion maps for GU
2 are depicted as label maps, for θ ∈ (0, α1) in Fig-

ure B.1; θ ∈ (α1, α2) in Figure B.2; θ ∈ (α2, α3) in Figure B.3; θ ∈ (α3, α4) in Figure B.4;
and θ ∈

(
α4,

π
4
)

in Figure B.5. Some neighborhood motion maps are symmetric with
respect to the origin i.e., the neighborhood motion map of the index (0, 0).

113

Appendix B. Neighborhood motion maps for GU
2 (8-neighborhood case) 114

(-4,4) (-3,4) (-2,4) (-1,4) (0,4) (1,4) (2,4) (3,4) (4,4)

(-4,3) (-3,3) (-2,3) (-1,3) (0,3) (1,3) (2,3) (3,3) (4,3)

(-4,2) (-3,2) (-2,2) (-1,2) (0,2) (1,2) (2,2) (3,2) (4,2)

(-4,1) (-3,1) (-2,1) (-1,1) (0,1) (1,1) (2,1) (3,1) (4,1)

(-4,0) (-3,0) (-2,0) (-1,0) (0,0) (1,0) (2,0) (3,0) (4,0)

(-4,-1) (-3,-1) (-2,-1) (-1,-1) (0,-1) (1,-1) (2,-1) (3,-1) (4,-1)

(-4,-2) (-3,-2) (-2,-2) (-1,-2) (0,-2) (1,-2) (2,-2) (3,-2) (4,-2)

(-4,-3) (-3,-3) (-2,-3) (-1,-3) (0,-3) (1,-3) (2,-3) (3,-3) (4,-3)

(-4,-4) (-3,-4) (-2,-4) (-1,-4) (0,-4) (1,-4) (2,-4) (3,-4) (4,-4)

Figure B.1: Neighborhood motion maps of GU
2 , as label maps, for θ ∈ (0, α1).

Each label (p, q) corresponds to the frame fθ
p,q. Neighborhood motion maps

which correspond to non-injective zones are marked by brown dashed frames.
The edges of the neighborhood motion maps graph are marked by color line
segments which connect different neighborhood motions maps (see Chapter 3 of
Part I).

Appendix B. Neighborhood motion maps for GU
2 (8-neighborhood case) 115

(-4,4) (-3,4) (-2,4) (-1,4) (0,4) (1,4) (2,4) (3,4) (4,4)

(-4,3) (-3,3) (-2,3) (-1,3) (0,3) (1,3) (2,3) (3,3) (4,3)

(-4,2) (-3,2) (-2,2) (-1,2) (0,2) (1,2) (2,2) (3,2) (4,2)

(-4,1) (-3,1) (-2,1) (-1,1) (0,1) (1,1) (2,1) (3,1) (4,1)

(-4,0) (-3,0) (-2,0) (-1,0) (0,0) (1,0) (2,0) (3,0) (4,0)

(-4,-1) (-3,-1) (-2,-1) (-1,-1) (0,-1) (1,-1) (2,-1) (3,-1) (4,-1)

(-4,-2) (-3,-2) (-2,-2) (-1,-2) (0,-2) (1,-2) (2,-2) (3,-2) (4,-2)

(-4,-3) (-3,-3) (-2,-3) (-1,-3) (0,-3) (1,-3) (2,-3) (3,-3) (4,-3)

(-4,-4) (-3,-4) (-2,-4) (-1,-4) (0,-4) (1,-4) (2,-4) (3,-4) (4,-4)

Figure B.2: Neighborhood motion maps GU
2 , as label maps, for θ ∈ (α1, α2)

that differ from those for θ ∈ (0, α1). Each label (p, q) corresponds to the frame
fθ

p,q. Neighborhood motion maps which correspond to non-injective zones are
marked by brown dashed frames. The edges of the neighborhood motion maps
graph are marked by color line segments which connect different neighborhood
motions maps (see Chapter 3 of Part I). The elements which have not changed
with respect to the set illustrated in Figure B.1 are faded.

Appendix B. Neighborhood motion maps for GU
2 (8-neighborhood case) 116

(-4,4) (-3,4) (-2,4) (-1,4) (0,4) (1,4) (2,4) (3,4) (4,4)

(-4,3) (-3,3) (-2,3) (-1,3) (0,3) (1,3) (2,3) (3,3) (4,3)

(-4,2) (-3,2) (-2,2) (-1,2) (0,2) (1,2) (2,2) (3,2) (4,2)

(-4,1) (-3,1) (-2,1) (-1,1) (0,1) (1,1) (2,1) (3,1) (4,1)

(-4,0) (-3,0) (-2,0) (-1,0) (0,0) (1,0) (2,0) (3,0) (4,0)

(-4,-1) (-3,-1) (-2,-1) (-1,-1) (0,-1) (1,-1) (2,-1) (3,-1) (4,-1)

(-4,-2) (-3,-2) (-2,-2) (-1,-2) (0,-2) (1,-2) (2,-2) (3,-2) (4,-2)

(-4,-3) (-3,-3) (-2,-3) (-1,-3) (0,-3) (1,-3) (2,-3) (3,-3) (4,-3)

(-4,-4) (-3,-4) (-2,-4) (-1,-4) (0,-4) (1,-4) (2,-4) (3,-4) (4,-4)

Figure B.3: Neighborhood motion maps GU
2 , as label maps, for θ ∈ (α2, α3) that

differ from those for θ ∈ (α1, α2). Each label (p, q) corresponds to the frame
fθ

p,q. Neighborhood motion maps which correspond to non-injective zones are
marked by brown dashed frames. The edges of the neighborhood motion maps
graph are marked by color line segments which connect different neighborhood
motions maps (see Chapter 3 of Part I). The elements which have not changed
with respect to the set illustrated in Figure B.2 are faded.

Appendix B. Neighborhood motion maps for GU
2 (8-neighborhood case) 117

(-4,4) (-3,4) (-2,4) (-1,4) (0,4) (1,4) (2,4) (3,4) (4,4)

(-4,3) (-3,3) (-2,3) (-1,3) (0,3) (1,3) (2,3) (3,3) (4,3)

(-4,2) (-3,2) (-2,2) (-1,2) (0,2) (1,2) (2,2) (3,2) (4,2)

(-4,1) (-3,1) (-2,1) (-1,1) (0,1) (1,1) (2,1) (3,1) (4,1)

(-4,0) (-3,0) (-2,0) (-1,0) (0,0) (1,0) (2,0) (3,0) (4,0)

(-4,-1) (-3,-1) (-2,-1) (-1,-1) (0,-1) (1,-1) (2,-1) (3,-1) (4,-1)

(-4,-2) (-3,-2) (-2,-2) (-1,-2) (0,-2) (1,-2) (2,-2) (3,-2) (4,-2)

(-4,-3) (-3,-3) (-2,-3) (-1,-3) (0,-3) (1,-3) (2,-3) (3,-3) (4,-3)

(-4,-4) (-3,-4) (-2,-4) (-1,-4) (0,-4) (1,-4) (2,-4) (3,-4) (4,-4)

Figure B.4: Neighborhood motion maps GU
2 , as label maps, for θ ∈ (α3, α4) that

differ from those for θ ∈ (α2, α3). Each label (p, q) corresponds to the frame
fθ

p,q. Neighborhood motion maps which correspond to non-injective zones are
marked by brown dashed frames. The edges of the neighborhood motion maps
graph are marked by color line segments which connect different neighborhood
motions maps (see Chapter 3 of Part I). The elements which have not changed
with respect to the set illustrated in Figure B.3 are faded.

Appendix B. Neighborhood motion maps for GU
2 (8-neighborhood case) 118

(-4,4) (-3,4) (-2,4) (-1,4) (0,4) (1,4) (2,4) (3,4) (4,4)

(-4,3) (-3,3) (-2,3) (-1,3) (0,3) (1,3) (2,3) (3,3) (4,3)

(-4,2) (-3,2) (-2,2) (-1,2) (0,2) (1,2) (2,2) (3,2) (4,2)

(-4,1) (-3,1) (-2,1) (-1,1) (0,1) (1,1) (2,1) (3,1) (4,1)

(-4,0) (-3,0) (-2,0) (-1,0) (0,0) (1,0) (2,0) (3,0) (4,0)

(-4,-1) (-3,-1) (-2,-1) (-1,-1) (0,-1) (1,-1) (2,-1) (3,-1) (4,-1)

(-4,-2) (-3,-2) (-2,-2) (-1,-2) (0,-2) (1,-2) (2,-2) (3,-2) (4,-2)

(-4,-3) (-3,-3) (-2,-3) (-1,-3) (0,-3) (1,-3) (2,-3) (3,-3) (4,-3)

(-4,-4) (-3,-4) (-2,-4) (-1,-4) (0,-4) (1,-4) (2,-4) (3,-4) (4,-4)

Figure B.5: Neighborhood motion maps GU
2 , as label maps, for θ ∈

(
α4,

π
4
)

that
differ from those for θ ∈ (α3, α4). Each label (p, q) corresponds to the frame
fθ

p,q. Neighborhood motion maps which correspond to non-injective zones are
marked by brown dashed frames. The edges of the neighborhood motion maps
graph are marked by color line segments which connect different neighborhood
motions maps (see Chapter 3 of Part I). The elements which have not changed
with respect to the set illustrated in Figure B.4 are faded.

Appendix C

Neighborhood motion maps for
GU

1 and their graph

Neighborhood motion maps for GU
1 are depicted as label maps, for θ1 ∈ (α0, α1);

θ2 ∈ (α1, α2); and θ3 ∈ (α2, α3) in Figure C.1. Note that, neighborhood motion maps in
Figure C.1 are arranged with respect to the hexagonal lattice and each can be identified
thanks to its axial coordinates [7, p. 17]. We note that in such an arrangement neigh-
borhood motion maps are symmetric with respect to the origin—the frame of the index
(0, 0). For example, the neighborhood motion map of the index (−4, 3) is symmetric to
that of the index (4,−3) (see Figure C.1).

119

Neighborhood motion maps for GU
1 and their graph 120

(0,0)(-1,0)(-2,0)(-3,0) (1,0) (2,0)

(0,-3) (3,-3)(2,-3)(1,-3)

(2,-4)(1,-4)

(0,-1) (1,-1)(-1,-1)(-2,-1)(-3,-1) (2,-1) (3,-1)

(3,0)

(0,-2) (2,-2)(1,-2)(-1,-2)(-2,-2) (3,-2) (4,-2)

(4,-3)

(-2,2)

(-3,3)

(-3,2)(-4,2)

(-4,3)

(0,2)

(0,3)

(-1,2)

(-1,3)(-2,3)

(1,2)

(-1,1)(-2,1)(-3,1) (0,1) (1,1) (2,1) (3,1)

(2,2)

(-2,4) (-1,4)

Figure C.1: The set of neighborhood motion maps M1, for rotation angles
θ ∈ (α0, α1), visualized by the label map LU

1 (see Chapter 3 and Figure 3.2).
The neighborhood motion maps which correspond to the non-injective zones
are surrounded by pink ellipses. The edges of the neighborhood motion maps
graph are marked by color line segments which connect different neighborhood
motions maps (see Chapter 3 of Part I).

Neighborhood motion maps for GU
1 and their graph 121

(0,0)(-2,0)(-3,0)

(0,-3) (3,-3)

(3,0)

(-3,3) (0,3)

(-3,-1)

(-3,1)

(-2,-1)

(-2,3)

(-2,2)(-3,2)

(-4,3)

(-1,4)

(-1,3)

(0,2) (1,2)

(2,0)

(3,-1)

(2,1) (3,1)

(4,-3)(2,-3)

(3,-2)(2,-2)

(2,-4)(1,-4)

(1,-3)

(0,-2)(-1,-2)

(1,0)(-1,0)

(0,1) (1,1)(-1,1)(-2,1)

(2,2)(-1,2)(-4,2)

(-2,4)

(1,-1) (2,-1)(0,-1)(-1,-1)

(-2,-2) (1,-2) (4,-2)

Figure C.2: The set of neighborhood motion maps M1, for rotation angles
θ ∈ (α1, α2), visualized by the label map LU

1 (see Chapter 3 and Figure 3.2).
The neighborhood motion maps which correspond to the non-injective zones are
surrounded by pink ellipses. The elements which have changed with respect to
the set illustrated in Figure C.1 are surrounded by black squares, while those
which have not changed are faded. The edges of the neighborhood motion maps
graph are marked by color line segments which connect different neighborhood
motions maps (see Chapter 3 of Part I).

Neighborhood motion maps for GU
1 and their graph 122

(0,0)(-2,0)

(-2,-1)

(-1,3)

(2,0)

(2,1)

(2,-2)

(1,-3)

(0,-2)

(-1,4)(-2,4)

(-2,3) (0,3)

(1,2)(-1,2)

(1,1)(0,1) (3,1)

(2,2)

(3,0)

(2,-1) (3,-1)

(1,0)

(2,-3)

(1,-2)

(1,-1)

(4,-2)

(4,-3)(3,-3)(0,-3)

(1,-4) (2,-4)

(0,-1)(-1,-1)(-3,-1)

(-2,-2)

(-3,0) (-1,0)

(-3,1) (-2,1)

(-4,3) (-3,3)

(-4,2)

(-1,1)

(-1,-2)

(0,2)(-2,2)(-3,2)

(3,-2)

Figure C.3: The set of neighborhood motion maps M1, for rotation angles
θ ∈ (α2, α3), visualized by the label map LU

1 (see Chapter 3 and Figure 3.2).
The neighborhood motion maps which correspond to the non-injective zones are
surrounded by pink ellipses. The elements which have changed with respect to
the set illustrated in Figure C.2 are surrounded by black squares, while those
which have not changed are faded. The edges of the neighborhood motion maps
graph are marked by color line segments which connect different neighborhood
motions maps (see Chapter 3 of Part I).

Bibliography

[1] K. Fredriksson. Rotation Invariant Template Matching. PhD thesis, University of
Helsinki, 2001.

[2] A. Yilmaz, O. Javed, and M. Shah. Object Tracking: A Survey. Computing Surveys,
38(4), 2006. ISSN 0360-0300.

[3] V. Ostromoukhov and R. D. Hersch. Halftoning by Rotating Non-Bayer Dispersed
Dither Arrays. Milestone Series, 2411:238–255, 1999. ISSN 1050-0529.

[4] V. Ostromoukhov, R. D. Hersch, and I. Amidror. Rotated Dispersed Dither: A New
Technique for Digital Hhalftoning. In CGIT, SIGGRAPH, pages 123–130. ACM,
1994.

[5] T. Y. Kong and A. Rosenfeld. Digital Topology: Introduction and Survey. Computer
Vision, Graphics, and Image Processing, 48(3):357–393, 1989. ISSN 0734-189X.

[6] R. Klette and A. Rosenfeld. Digital Geometry: Geometric Methods for Digital
Picture Analysis. Elsevier, 2004.

[7] L. Middleton and J. Sivaswamy. Hexagonal Image Processing: A Practical Ap-
proach. Advances in Pattern Recognition. Springer, 2005.

[8] J. Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982.

[9] K. Pluta, P. Romon, Y. Kenmochi, and N. Passat. Bijective Digitized Rigid Motions
on Subsets of the Plane. Journal of Mathematical Imaging and Vision, 59(1):84–105,
2017. ISSN 0924-9907.

[10] K. Pluta, P. Romon, Y. Kenmochi, and N. Passat. Honeycomb Geometry: Rigid
Motions on the Hexagonal Grid. In DGCI, volume 10502 of Lecture Notes in Com-
puter Science, pages 33–45. Springer, 2017.

[11] B. Nouvel and É. Rémila. Configurations Induced by Discrete Rotations: Peri-
odicity and Quasi-periodicity Properties. Discrete Applied Mathematics, 147(2–3):
325–343, 2005. ISSN 0166-218X.

123

Bibliography 124

[12] B. Nouvel and É. Rémila. On Colorations Induced by Discrete Rotations. In DGCI,
volume 2886 of Lecture Notes in Computer Science, pages 174–183. Springer, 2003.

[13] A. W. Paeth. Graphics Gems. chapter A Fast Algorithm for General Raster Rota-
tion, pages 179–195. Academic Press Professional, Inc., 1990.

[14] É. Andres. The Quasi-shear Rotation. In DGCI, volume 1176 of Lecture Notes in
Computer Science, pages 307–314. Springer, 1996.

[15] Y. Thibault. Rotations in 2D and 3D Discrete Spaces. PhD thesis, Université
Paris-Est, 2010.

[16] W. S. Anglin. Using Pythagorean Triangles to Approximate Angles. American
Mathematical Monthly, 95(6):540–541, 1988. ISSN 0002-9890.

[17] V. Ostromoukhov. Reproduction Couleur par Trames Irrégulières et Semi-régulières.
PhD thesis, École Polytechnique Fédérale de Lausanne, 1995.

[18] J.-P. Reveillès. Géométrie Discrète, Calcul en Nombres Entiers et Algorithmique.
Habilitation à diriger des recherches, Université Louis-Pasteur, 1991. URL https:

//hal.archives-ouvertes.fr/tel-01279525.

[19] M.-A. Jacob and É. Andres. On Discrete Rotations. In 5th International Work-
shop on Discrete Geometry for Computer Imagery, pages 161–174. Université d’Au-
vergne, 1995.

[20] É. Andres. Cercles Discrets et Rotations Discrètes. PhD thesis, Université Louis-
Pasteur, 1992.

[21] É. Andres. Modélisation Analytique Discrète d’Objets Géométriques. Habilitation
à diriger des recherches, Université de Poitiers, 2000.

[22] B. Nouvel and É. Rémila. Characterization of Bijective Discretized Rotations.
In IWCIA, volume 3322 of Lecture Notes in Computer Science, pages 248–259.
Springer, 2005.

[23] B. Nouvel. Rotations Discrètes et Automates Cellulaires. PhD thesis, École Normale
Supérieure de Lyon, 2006.

[24] T. Roussillon and D. Cœurjolly. Characterization of Bijective Discretized Rotations
by Gaussian Integers. Research report, LIRIS UMR 5205, 2016. URL https:

//hal.archives-ouvertes.fr/hal-01259826.

[25] B. Nouvel and É. Rémila. Incremental and Transitive Discrete Rotations. In IW-
CIA, volume 4040 of Lecture Notes in Computer Science, pages 199–213. Springer,
2006.

https://hal.archives-ouvertes.fr/tel-01279525
https://hal.archives-ouvertes.fr/tel-01279525
https://hal.archives-ouvertes.fr/hal-01259826
https://hal.archives-ouvertes.fr/hal-01259826

Bibliography 125

[26] P. Ngo, Y. Kenmochi, N. Passat, and H. Talbot. Combinatorial Structure of Rigid
Transformations in 2D Digital Images. Computer Vision and Image Understanding,
117(4):393–408, 2013. ISSN 1077-3142.

[27] P. Ngo, Y. Kenmochi, N. Passat, and H. Talbot. Topology-preserving Conditions for
2D Digital Images under Rigid Transformations. Journal of Mathematical Imaging
and Vision, 49(2):418–433, 2014. ISSN 0924-9907.

[28] P. Ngo, Y. Kenmochi, A. Sugimoto, H. Talbot, and N. Passat. Discrete Rigid
Registration: A Local Graph-search Approach. Discrete Applied Mathematics, 216:
461–481, 2017. ISSN 0166-218X.

[29] P. Ngo, Y. Kenmochi, N. Passat, and H. Talbot. On 2D Constrained Discrete Rigid
Transformations. Annals of Mathematics and Artificial Intelligence, 75(1):163–193,
2014. ISSN 1012-2443.

[30] P. Ngo, N. Passat, Y. Kenmochi, and H. Talbot. Topology-preserving Rigid Trans-
formation of 2D Digital Images. IEEE Transactions on Image Processing, 23(2):
885–897, 2014. ISSN 1057-7149.

[31] I. Her. Geometric Transformations on the Hexagonal Grid. IEEE Transactions on
Image Processing, 4(9):1213–1222, 1995. ISSN 1057-7149.

[32] Y. Thibault, Y. Kenmochi, and A. Sugimoto. Computing Upper and Lower Bounds
of Rotation Angles from Digital Images. Pattern Recognition, 42(8):1708–1717,
2009. ISSN 0031-3203.

[33] K. Pluta, T. Roussillon, D. Cœurjolly, P. Romon, Y. Kenmochi, and V. Ostro-
moukhov. Characterization of Bijective Digitized Rotations on the Hexagonal
Grid. To appear in Journal of Mathematical Imaging and Vision., 2018. URL
http://dx.doi.org/10.1007/s10851-018-0785-1.

[34] R. A. Gordon. Properties of Eisenstein Triples. Mathematics Magazine, 85(1):
12–25, 2012. ISSN 0025-570X.

[35] J. Gilder. Integer-sided Triangles with an Angle of 60◦. The Mathematical Gazette,
66(438):261–266, 1982. ISSN 0025-5572.

[36] A. I. R. Galarza and J. Seade. Introduction to Classical Geometries. Birkhäuser,
2007.

[37] V. Berthé and B. Nouvel. Discrete Rotations and Symbolic Dynamics. Theoretical
Computer Science, 380(3):276–285, 2007. ISSN 0304-3975.

http://dx.doi.org/10.1007/s10851-018-0785-1

Bibliography 126

[38] D. J. Hunter. Essentials of Discrete Mathematics. Jones & Bartlett Learning, 2
edition, 2010.

[39] P.-L. Bazin, N. Shiee, L. M. Ellingsen, J. L. Prince, and D. L. Pham. Digital
Topology in Brain Image Segmentation and Registration, volume 1, pages 339–375.
Springer, 2011.

[40] B. Zitova and J. Flusser. Image Registration Methods: A Survey. Image and Vision
Computing, 21(11):977–1000, 2003. ISSN 0262-8856.

[41] S. Basu, R. Pollack, and M.-F. Roy. Algorithms in Real Algebraic Geometry.
Springer, 2005.

[42] G. E. Collins. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic
Decomposition. In ATFL, volume 33 of Lecture Notes in Computer Science, pages
134–183. Springer, 1975.

[43] J. Renegar. On the Computational Complexity and Geometry of the First-order
Theory of the Reals. Part I: Introduction. Preliminaries. The Geometry of Semi-
algebraic Sets. The Decision Problem for the Existential Theory of the Reals. Jour-
nal of Symbolic Computation, 13(3):255–299, 1992. ISSN 0747-7171.

[44] K. Kurdyka, P. Orro, S. Simon, et al. Semialgebraic Sard Theorem for Generalized
Critical Values. Journal of Differential Geometry, 56(1):67–92, 2000. ISSN 0022-
040X.

[45] T. Toffoli and J. Quick. Three-dimensional Rotations by Three Shears. Graphical
Models and Image Processing, 59(2):89–95, 1997. ISSN 1077-3169.

[46] B. Chen and A. Kaufman. 3D Volume Rotation Using Shear Transformations.
Graphical Models, 62(4):308–322, 2000. ISSN 1524-0703.

[47] Y. Thibault, A. Sugimoto, and Y. Kenmochi. 3D Discrete Rotations Using Hinge
Angles. Theoretical Computer Science, 412(15):1378–1391, 2011. ISSN 0304-3975.

[48] K. Pluta, G. Moroz, Y. Kenmochi, and P. Romon. Quadric Arrangement in Classi-
fying Rigid Motions of a 3D Digital Image. In CASC, volume 9890 of Lecture Notes
in Computer Science, pages 426–443. Springer, 2016.

[49] K. Pluta, P. Romon, Y. Kenmochi, and N. Passat. Bijectivity Certification of 3D
Digitized Rotations. In CTIC, volume 9667 of Lecture Notes in Computer Science,
pages 30–41. Springer, 2016.

[50] R. Murray, Z. Li, and S. Sastry. A Mathematical Introduction to Robotic Manipu-
lation. CRC Press, 1994.

Bibliography 127

[51] J. Vince. Quaternions for Computer Graphics. Springer, 2011.

[52] K. Kanatani. Understanding Geometric Algebra: Hamilton, Grassmann, and Clif-
ford for Computer Vision and Graphics. CRC Press, 2015.

[53] J. H. Conway and D. A. Smith. On Quaternions and Octonions. Ak Peters Series.
Taylor & Francis, 2003.

[54] A. Cayley and A. R. Forsyth. The Collected Mathematical Papers of Arthur Cayley,
volume 1. The University Press, 1898.

[55] P. Singla and J. L. Junkins. Multi-resolution Methods for Modeling and Control of
Dynamical Systems. CRC Press, 2008.

[56] N. André. Largest Triangle with Vertices in the Unit Cube. Mathematics Stack Ex-
change. URL https://math.stackexchange.com/q/44499. Version: 2011-06-10.

[57] H. Croft, K. Falconer, and R. Guy. Unsolved Problems in Geometry. Springer,
1994.

[58] A. Schrijver. Theory of Linear and Integer Programming. John Wiley & Sons, 1998.

[59] J. Cremona. Letter to the Editor. American Mathematical Monthly, 94(8):757–758,
1987. ISSN 0002-9890.

[60] D. Micciancio and B. Warinschi. A Linear Space Algorithm for Computing the
Hermite Normal Form. In ISSAC, pages 231–236. ACM, 2001.

[61] C. Pernet and W. Stein. Fast Computation of Hermite Normal Forms of Random
Integer Matrices. Journal of Number Theory, 130(7):1675–1683, 2010. ISSN 0022-
314X.

[62] K. Pluta, Y. Kenmochi, N. Passat, H. Talbot, and P. Romon. Topological
Alterations of 3D Digital Images Under Rigid Transformations. Research re-
port, Laboratoire d’Informatique Gaspard-Monge UMR 8049, 2014. URL https:

//hal.archives-ouvertes.fr/hal-01333586.

[63] A. Amir, O. Kapah, and D. Tsur. Faster Two-dimensional Pattern Matching with
Rotations. Theoretical Computer Science, 368(3):196–204, 2006. ISSN 0304-3975.

[64] Ch. Hundt and M. Liskiewicz. On the Complexity of Affine Image Matching.
In STACS, volume 4393 of Lecture Notes in Computer Science, pages 284–295.
Springer, 2007.

[65] B. Mourrain, J. P. Tecourt, and M. Teillaud. On the Computation of an Arrange-
ment of Quadrics in 3D. Computational Geometry, 30(2):145–164, 2005. ISSN
0925-7721.

https://math.stackexchange.com/q/44499
https://hal.archives-ouvertes.fr/hal-01333586
https://hal.archives-ouvertes.fr/hal-01333586

Bibliography 128

[66] P.-L. Bazin, L. M. Ellingsen, and D. L. Pham. Digital Homeomorphisms in De-
formable Registration. In IPMI, volume 4584 of Lecture Notes in Computer Science,
pages 211–222. Springer, 2007.

[67] D. Halperin. Arrangements. In Handbook of Discrete and Computational Geometry,
pages 529–562. CRC Press, 2 edition, 2004.

[68] P. J. Rabier. Ehresmann Fibrations and Palais-Smale Conditions for Morphisms of
Finsler Manifolds. Annals of Mathematics, 146(3):647–691, 1997. ISSN 0003-486X.

[69] Z. Jelonek and K. Kurdyka. Quantitative Generalized Bertini-Sard Theorem for
Smooth Affine Varieties. Discrete & Computational Geometry, 34(4):659–678, 2005.
ISSN 0179-5376.

[70] Zbigniew Jelonek and Krzysztof Kurdyka. On Asymptotic Critical Values of a
Complex Polynomial. Journal für die reine und angewandte Mathematik, 2003
(565):1–11, 2003. ISSN 1435-5345.

[71] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties and Algorithms: An Introduction
to Computational Algebraic Geometry and Commutative Algebra. Springer, 1996.

[72] Z. Jelonek. Topological Characterization of Finite Mappings. Bulletin of the Polish
Academy of Sciences – Mathematics, 49(3):279–283, 2001. ISSN 1732-8985.

[73] M. Safey El Din and É. Schost. Properness Defects of Projections and Computation
of at Least One Point in Each Connected Component of a Real Algebraic Set.
Discrete & Computational Geometry, 32(3):417, 2004. ISSN 0179-5376.

[74] G. Moroz. Properness Defects of Projection and Minimal Discriminant Variety.
Journal of Symbolic Computation, 46(10):1139–1157, 2011. ISSN 0747-7171.

[75] F. Rouillier and P. Zimmermann. Efficient Isolation of Polynomial’s Real Roots.
Journal of Computational and Applied Mathematics, 162(1):33–50, 2004. ISSN
0377-0427.

[76] E. Hansen. Global Optimization Using Interval Analysis – The Multi-dimensional
Case. Numerische Mathematik, 34(3):247–270, 1980. ISSN 0945-3245.

[77] A. Neumaier. Interval Methods for Systems of Equations. Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press Cambridge, 1991.

[78] J. Abbott. Quadratic Interval Refinement for Real Roots. Communications in
Computer Algebra, 48(1/187):3–12, 2014. ISSN 1932-2240.

	Abstract
	Résumé
	Contents
	Preface
	I Digitized Rigid Motions of 2D Discrete Spaces
	1 Introduction
	2 Basic Notions
	2.1 2D Discrete Spaces
	2.2 Properties of Gaussian and Eisenstein Integers
	2.3 Pythagorean and Eisenstein triples
	2.4 Digitization – From C to Discrete Spaces
	2.5 Rigid Motions
	2.6 Digitized Rigid Motions
	2.7 Rational Rotations
	2.7.1 Pythagorean Rational Rotations
	2.7.2 Eisenstein Rational Rotations
	2.7.3 Density of Eisenstein Rational Rotations

	3 Local Alterations Induced by Digitized Rigid Motions
	3.1 Neighborhood Motion Map
	3.2 Remainder Range Partitioning and Neighborhood Motion Maps
	3.3 Set of Neighborhood Motion Maps
	3.4 Neighborhood Motion Maps Graph
	3.5 Non-surjectivity and Non-injectivity of Digitized Rigid Motions
	3.6 Preservation of Information
	3.7 Future Work and Conclusion

	4 Bijective Digitized Rigid Motions on Square Grid
	4.1 Globally Bijective Digitized Rigid Motions
	4.2 Locally Bijective Digitized Rigid Motions
	4.2.1 Forward Algorithm
	4.2.2 Backward Algorithm

	4.3 Finding a Local Bijectivity Angle Interval
	4.3.1 Hinge Angles for Rigid Motions
	4.3.2 An Algorithm for Finding the Local Bijectivity Angle Interval

	5 Bijective Digitized Rotations on Regular Hexagonal Grid
	5.1 Bijectivity of Digitized Rotations
	5.1.1 Set of Remainders
	5.1.2 Factorization of Primitive Eisenstein Integers
	5.1.3 Reduced Set of Remainders

	5.2 Characterization of Bijective Digitized Rotations
	5.3 Density of bijective digitized rotations

	II Digitized Rigid Motions of 3D Discrete Spaces
	6 Introduction
	7 Basic Notions
	7.1 Rotations in Three Dimensions
	7.1.1 Spatial Rotations and Quaternions
	7.1.2 Spatial Rotations and Cayley Transform

	7.2 Digitized Rigid Motions in Three Dimensions
	7.2.1 Transformation Models

	7.3 Point Status After Digitized Rigid Motions
	7.4 Connected Digital Sets and Neighborhood

	8 Characterizing the Bijectivity of 3D Digitized Rotations
	8.1 Bijectivity Characterization
	8.1.1 Set of Remainders
	8.1.2 Dense Subgroups and Non-injectivity
	8.1.3 Lipschitz Quaternions and Bijectivity

	8.2 An Algorithm for Bijectivity Characterization
	8.3 Future work and conclusion

	9 Computing 3D Neighborhood Motion Maps
	9.1 Motivation: Connectivity Alterations
	9.2 Neighborhood Alterations Under Digitized 3D Rigid Motions
	9.3 Arrangement of Quadrics
	9.3.1 The Problem as Arrangement of Hypersurfaces
	9.3.2 Uncoupling the Parameters

	9.4 Computing Arrangement of Quadrics in 3D
	9.4.1 Bifurcation and Critical Values
	9.4.2 Detection of Critical Values
	9.4.3 Sorting Critical Values
	9.4.4 Sweeping a Set of Quadrics

	9.5 Recovering Translation Parameter Values
	9.6 Case Study
	9.6.1 Combinatorial Issue
	9.6.2 Implementation and Experiments

	9.7 Future Work and Conclusion

	A Neighborhood motion maps for GU1 (4-neighborhood case)
	B Neighborhood motion maps for GU2 (8-neighborhood case)
	C Neighborhood motion maps for GU1 and their graph
	Bibliography

	fd@rm@0:
	fd@rm@1:
	fd@rm@2:
	fd@rm@3:
	fd@rm@4:
	fd@rm@5:
	fd@rm@6:
	fd@rm@7:
	fd@rm@8:
	fd@rm@9:
	fd@rm@10:
	fd@rm@11:

